

Fuel Cell Electric Vehicle Evaluation

2014 DOE Annual Merit Review and Peer Evaluation Meeting

Jennifer Kurtz, Sam Sprik, Mike Peters

Project ID# TV001

June 19, 2014: Washington, DC

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline Project start date: October 2012 Project end date: September 2014* Percent complete: On-going	Barriers Lack of current controlled and on- road hydrogen fuel cell vehicle data
Budget FY13 DOE funding: \$485k Planned FY14 DOE funding: \$415k Total project funding: \$900k	Partners Several fuel cell vehicle OEMs (data providers)

*Project continuation and direction determined annually by DOE

Project Objectives, Relevance, and Targets: Fuel Cell Electric Vehicle Evaluation

• Objectives

- Validate hydrogen fuel cell electric vehicles (FCEV) in real-world setting
- Identify current status and evolution of the technology

Relevance

- Objectively assess progress toward targets and market needs
- Provide feedback to hydrogen research and development
- Publish results for key stakeholder use and investment decisions

Key Targets					
Performance Measure	Status*	Ultimate (2020)			
Fuel Cell Stack Durability	2,500 hours	5,000 hours			
Vehicle Range	254+ miles	300+ miles			
Fill Rate	0.77 kg/min	1.0 kg/min			
Efficiency	59% at 25% Power	60% at 25% Power			

*As reported in previous Learning Demonstration results

APC/Shell Pipeline station, Torrance, CA. Photo: NREL

Approach: NFCTEC Analysis and Reporting of Real-World Operation Data

- Individual data analyses
 Identify individual contribution to CDPs
 Aggregated data across multiple systems, sites, and teams
 - Publish analysis results every six months without revealing proprietary data

www.nrel.gov/hydrogen/proj_tech_validation.html

• Shared every six months only with the

partner who supplied the data

Approach and Accomplishments: Milestones

Finalize data collection and analysis plans through communications with DOE and industry partners

- Move HSDC to Energy Systems Integration Facility
- Rebrand HSDC to National Fuel Cell Technology Evaluation Center (NFCTEC)
- Site visits
- Quarterly analysis of operation and maintenance data for fuel cell systems and hydrogen infrastructure
- Bi-annual technical composite data products

Approach: Benchmarking Current FCEV Performance Against Learning Demonstration Status

Approach: Tracking Future Progress Against Previous Demonstration Results

Vehicle Performance Metrics	Gen 1 Vehicle	Gen 2 Vehicle	2009 Target	After 2009Q4
Fuel Cell Stack Durability			2,000 hours	
Max Team Projected Hours to 10% Voltage Degradation	1,807 hours	<u>2,521</u> hours		
Average Fuel Cell Durability Projection	821 hours	1,062 hours		1,748 hours
Max Hours of Operation by a Single FC Stack to Date	2,375 hours	1,261 hours		1,582 hours
Driving Range				
Adjusted Dyno (Window Sticker) Range	103-190 miles	196- <u>254</u> miles		
Median On-Road Distance Between Fuelings	56 miles	81 miles		98 miles
Fuel Economy (Window Sticker)	42 – 57 mi/kg	43 – 58 mi/kg	no target	
Fuel Cell Efficiency at ¼ Power	51% – 58%	53% – <u>59</u> %	60%	
Fuel Cell Efficiency at Full Power	30% – 54%	42% – <u>53</u> %	50%	

H2 Cost at Station (early market)On-Site Natural Gas Reformation \$7.70 - \$10.30/kgOn-Site Electrolysis \$10.00 - \$12.90/kg\$3/gge	Infrastructure Performance Metrics		2009 Target	After 2009Q4	
	H ₂ Cost at Station (early market)	On-Site Natural Gas Reformation \$7.70 – \$10.30/kg	On-Site Electrolysis \$10.00 – \$12.90/kg	\$3/gge	
Average H ₂ Fueling Rate 0.77 kg/min 1.0 kg/min 0.65 kg/min	Average H ₂ Fueling Rate	0.77 kg/min		1.0 kg/min	0.65 kg/min

Outside of this project, DOE independent panels concluded at 500 replicate stations/year: Distributed natural gas reformation at 1,500 kg/day: **\$2.75-\$3.50/kg** (2006) Distributed electrolysis at 1,500 kg/day: **\$4.90-\$5.70** (2009)

Approach: NREL Fleet Analysis Toolkit

Accomplishment: Key Analysis Topics Identified

Critical

- Fuel cell durability
- Vehicle operation (hours, miles)
- Specs (power density, specific power)
- Range, fuel economy, and efficiency
- Fill performance
- Reliability

Important

- Drive behaviors
- Fill behaviors
- Power management
- Energy
- Transients
- Comparisons to conventional vehicles

These key topics were selected based on review of past CDPs, targets, most common referenced topics, and DOE feedback.

Accomplishment: Individual OEM Fleet Processing (Four OEMs)

Cumulative Number of Files and Data Size

Accomplishment: Fake CDPs Created

Accomplishments: Responses to Previous Year Reviewers' Comments

• This project was not reviewed in FY13.

Highlights of Interactions and Collaborations

Auto industry partners

- Detailed discussion of NFCTEC procedures
- Discussion of data priorities, templates, and methods
- Detailed data analyses individual reviews
- Review of all results prior to publication

• U.S. DRIVE technical teams

 Provide briefing when requested of FCEV performance results to the Hydrogen Storage and Fuel Cell technical teams

FCHEA technical working groups

- Participate in Transportation Working Group
- Participate in Joint H₂ Quality Task Force
- California organizations
 - California Fuel Cell Partnership and California Hydrogen Business Council: NREL actively participating as member
 - California Air Resources Board and California Energy Commission: New stations offer potential to provide future data to NREL

Future Work

- Perform quarterly analysis of data
- Conduct detailed data reviews with OEMs
- Identify first set of FCEV CDPs for publication scheduled at the end of FY14
- Identify new opportunities to document fuel cell and hydrogen progress publicly

Summary

Relevance

• Validate FCEV performance against DOE and industry targets

• Approach

- Collaborate with industry partners
- Continue to develop core NFCTEC and analysis capability and tools
- Leverage 7+ years of analysis and experience from the Learning Demonstration

• Technical Accomplishments and Progress

- Analyzed data from four OEMs
- Performed detailed reviews of individual OEM data results

Collaborations

 Working closely with industry partners to validate methodology, and with other key stakeholders to ensure relevance of results

• Future Work

- Identify first set of FCEV CDPs for publication scheduled at the end of FY14
- Identify new opportunities to document fuel cell and hydrogen progress publicly