

2014 DOE Hydrogen and Fuel Cells Program Review

Danny Terlip, Kevin Harrison, Michael Peters, Misho Penev

June 19, 2014

Project ID: TV019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Project start date: October 2012 Project end date: August 2015*

Barriers (2012 MYRDD)

D. Lack of Performance Data (detailed compressor reliability data and analysis)

Budget

- FY13 DOE Funding: \$265k
- Planned Funding for FY14: \$265k
- PDC Machines Contribution:
 - \$193k labor and equipment
- Total DOE Project Value: \$458k

* Project continuation and direction determined annually by DOE

Partners

- PDC Machines (CRADA)
- Xcel Energy (CRADA)
- Project Lead: Kevin Harrison

Relevance to Addressing Barriers

Technology Validation data from real-world hydrogen stations:

- Compressors are #1 in downtime and maintenance event count accounting for ½ of unscheduled maintenance hours
- High level snapshot of compressor performance

hydrogen compressor Total Events = 1,872¹ Total Hours = 11,044 70% unscheduled 68% unscheduled dispenser 6% 7% control electronics 8% feedwater system 38% air system 9% 16% 51% electrical valves 17% 19%

Infrastructure Maintenance By Equipment Type

Objectives

- Highly Accelerated Life Testing (HALT) to reproduce failures on a shorter time scale
- Correlate to real-world usage with statistical methods
- Work with manufacturer to improve designs and reduce downtime

Failure Modes for Top Four Infrastructure Equipment Categories

Approach: Component Testing in a Fully Integrated System

Equipment Involved

Electrolyzers (Quantity: 4) 3 PEM, 1 Alkaline 250kW stack test bed **Compressors (7)** 3 diaphragm, 4 piston **Compressor** (1) PDC Machines – CRADA Hydrogen Storage (19) 350 kg, 3500 to 10k psig Fuel cells (5, PEM) **Dispenser (350 bar) Dispenser (700 bar July 14) 1 MW AC/DC Buss Network 100 kW Wind Turbine Configurable PV array**

Approach: Installed and Initiated Accelerated Compressor Test

Industry Collaboration

PDC Machines (CRADA)

- PDC-4 Series diaphragm compressor
 - Commercially available unit
 - 85 kg/day max flow
 - 6,000 PSI discharge
 - 30 HP TEFC motor
- System Instrumentation

- High resolution hydraulic oil pressure (25kS/s)
- Temperatures
- Pressures
- Alarms
- AC power transducer
- As of April 15, less than 100 hours of operation

Approach for Accelerated Compressor Testing

Operational Reliability & Performance Testing

 Partnered with compressor manufacturers (CRADA) and PNNL to instrument, monitor and analyze performance in a relevant accelerated-testing environment (actual fueling station serving vehicles)

Exercise Existing Test Platform

- Interfaced with existing electrical and gas infrastructure
- Control system for unattended operation and recycle mode
- Hydrogen used to fuel vehicles, support facility hydrogen needs and fuel cell testing

Installed high-speed data acquisition platform

Approach: Lessons Learned from FY13 Compressor Performance

Failure of Material with diaphragm compressors

- Compressor rebuild due to failures
 - Check valves
 - Diaphragms

Air leaks with piston compressors

- Frequent replacement of high pressure seals
- Issues surrounding sealing

NATIONAL RENEWABLE ENERGY LABORATORY

Approach: Operation Targets

Lifetime and Duty Cycle

- Operation of one compressor expected for 12 months (begin data April 2014)
- Target 4,500 hours (~50% uptime) and 17,000 kg compressed (unless significant failure results in extended downtime)
- Operation based on high use MHE stations
- Transfer data to PNNL to inform models

Milestones

- Study and quantify power vs pressure requirements ('14 Q3)
- 1,000 hours of operation ('14 Q4)
- Compare HALT results with field demonstration results ('14 Q4)

Approach: Accelerated Compressor Reliability Test Plan

Test Plan – NREL/PDC Machines

- Accelerated operation designed to quickly reach failure
- Deep dive failure investigation with manufacturer includes disassembly, visual inspection, material property testing, and rebuild
- Target multiple failures on one compressor through rebuild/repair for continued operation
- Results corroborated with the manufacturer for reliability improvements, reducing unplanned station maintenance, maintenance cost, and down-time.

Step	Test Action	Description
1	Start-Up Characterization	Power draw dictates electrical system requirements
2	Pressure Sweep	Record compressor flow rate for variable discharge pressures
3	Extended Operation	Monitor system variables to predict failures
4	Cold Start	Characterize performance in difficult ambient conditions
5	Feed Pressure Sensitivity	Determine performance impacts of varying feed pressure
6	Start/Stop Cycling	Analyze performance impacts of rapid start/stop operation

Accomplishment: Installed and Initiated Accelerated

Compressor Test

Power vs Pressure Profile

PDC4-Series Power vs Pressure

Accomplishment: Compressor Performance

- Variable power consumption
 - Constant discharge pressure
 - Current (yellow) fluctuation
 - Voltage (cyan) fluctuation
 - Power fluctuation
 - Average power factor
- Averaging required for long term data collection

Accomplishment: Compressor Reliability & Performance

National Lab Collaboration

PNNL – Using PDC Results

- Data transfer to PNNL from NREL testing
- Oil pressure on diaphragm
- High-speed data collection (< 25,000 samples/sec)
- Support dynamic compressor modeling at PNNL

Hydraulic Oil Pressure - 1st Stage

Accomplishment: Compressor Reliability & Performance (cont'd)

Industry Collaboration – Predicting Failures

PDC Machines – Troubleshooting compressor problems

- Informed from data collection
- List of maintenance activities

Actual abnormal pressure data

Collaborations

Formal

- PDC Machines (CRADA) Compressor reliability testing
- Xcel Energy (CRADA) Wind-to-Hydrogen demonstration project since 2005

Informal

Proton Onsite – Electrolyzer stack durability testing

Information Sharing

- PNNL Advanced diaphragm compressor modeling
- H2FIRST Hydrogen Fueling Infrastructure Research and Station Technology (TV026)

Internal

- Hose Reliability Improvement (PD100)
- INTEGRATE Integrated Network Testbed for Energy Grid Research and Technology Experimentation
- Renewable Electrolysis: Integrated System Development and Testing (PD031)

Future Work: Reliability Analysis Framework

- Complete Weibull component reliability analysis
- Analyze details of unscheduled maintenance and failure investigation
- Specific metrics include: Mean time between failure, frequency, reliability growth (lambda and beta), cumulative hydrogen compressed, cumulative operation hours, maintenance categories, failure modes, and root cause
- Collect operation data
- Example analysis results:

Future Work: RD&D Challenges

Operational Reliability & Performance Testing

PDC Machines Compressor CRADA

- Test plan includes long-duration compressor operation (>1000 hours), periodic rebuild and maintenance
- Identify failures, MTBF, down-time and failure indicators
- Work with manufacturer to improve reliability of future designs
- Develop another CRADA with different compressor technology manufacturer in 2015
- Work with PNNL to improve advanced diaphragm compressor modeling
- Test additional hydrogen fueling station components 'in-situ' at new NREL 700 bar fueling station

Summary

Relevance: Address barriers that include; lack of performance data, instrumentation, sensor accuracy, technology transfer and integration with renewable sources like wind and solar.

Approach: Work closely with industry to understand and improve compressor reliability and exercise NREL's existing test platform.

Technical Accomplishments:

- Installed, commissioned and began operation of PDC-4 Series compressor in Integrated Renewable Electrolysis System at NREL-NWTC
- Analysis of compressor power and pressure data
- Logging of hydraulic oil pressures and other system variables

Technology Transfer & Collaborations: Two new CRADA's in 2013. Validate system performance and disseminate results to industry. Formal and informal partnerships with industry, academia and domestic/international researchers.

Proposed Future Research:

- Long-duration testing of piston and diaphragm compressors
- Reach out to different compressor technology manufacturers
- Transition compressor testing to ESIF