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Barriers

• A. Durability (catalyst)
• B. Cost (catalyst)
• C. Performance (catalyst)

Overview

Timeline

• Project Start Date: July 2014
• Project End Date: 9/30/2015
• Percent Complete:  60%

Budget

• Total Project Budget: $250k
DOE Share: $250k
Contractor Share: $0

• Total DOE Funds Spent*: $194k
* As of 3/31/15

Partners/Collaborators

• Ballard Power Systems

• NanoTechLabs

• Greenway Energy
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Technical Targets

• Performance-Demonstrate performance of non-PGM catalyst prepared using CVD 
system to meet 6 A/cm3 in RRDE at 0.8 V in acid solutions 

• Cost-Use single step, highly scalable process to decrease cost production of non-
PGM catalysts

• Durability-Demonstrate favorable 4e- reaction pathway

Relevance

Project Objectives
• To co-synthesize highly active, low-cost non-precious metal catalysts for the oxygen

reduction reaction by doping nitrogen-activated metal complexes into a novel nano-
carbon support in a single-step process that is easily scalable and market relevant.

Characteristic Units Target

Non-Pt Catalyst Activity per volume of supported catalyst A / cm3 @ 800 mViR-free ≥ 300
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Approach

Traditional Synthesis
• Solution synthesis
• Heat Treatment

Chemical Vapor Deposition (CVD)
• One step synthesis
• In-situ surface modification
• Heat Treatment

Characterization
• RRDE, XPS, FTIR, BET
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Approach: Project Milestones

Date Milestone Status
10/1/2014 Down select on non-PGM catalyst materials and precursors

needed for the synthesis Complete

1/6/15
Establish performance baseline of non-PGM catalyst
through traditional synthesis processes through RRDE
testing at RT

Complete,
ongoing

5/31/15 Compare performance of selected surface modified non-
PGM catalysts with un-modified non-PGM catalysts On schedule

9/15/15

Demonstrate performance of non-PGM catalyst prepared
using CVD system using the selected different precursors
with the potential to meet 6 A/cm3 in RRDE at 0.8 V vs RHE in
acidic conditions

On schedule
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Accomplishments: Traditional Synthesis

diazines,
poly-azines

Nitrogen containing 
heterocyclic building 

blocks

Oxidized carbon black

+

Carboxyl-functionalized 
carbon source Iron(II) source

Fe-N-carbon precursor

Pyrolysis
Δ, 800 - 900 ºC

Iron(II) acetate

Fe-N-carbon black 
catalyst

amines

Macrocycles

Solution Synthesis
Δ, 70 - 100 ºC

M 
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Accomplishments: Traditional Synthesis (initial screening)

CV/RRDE: 0.1 M HClO4; 900 rpm; 25ºC;
RHE reference electrode; graphite counter
electrode; 20mV/s, 600 µg/cm2

• The highest kinetic current 
densities of the screened 
procedures was obtained for 
Fe-diazine complex

• RDE evaluation of different 
precursors on carbon black

Fe-diazine complex was selected for the optimization of the synthesis
reaction and thermal treatments

Target
6 A/cm3
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Accomplishments: Traditional Synthesis (optimized synthesis) 

3.5

CV/RRDE: 0.1 M HClO4; 900 rpm; 25ºC;
RHE reference electrode; graphite counter
electrode; 20mV/s, 600 µg/cm2

• Kinetic current densities 
0.93 A/cm3 have been 
obtained at the optimized 
synthesis conditions

• Exposure of functional 
groups by the larger 
surface area and 
activation by the heat 
treatment results in 
higher ORR activity

• Ring currents shows 
high selectivity toward 
the 4 e- reaction. 

• CV shows the effect of 
heat treatment 
conditions on the 
electrochemically 
accessible surface area

• After pyrolysis of 
complexed catalyst,  
higher surface 
electrochemical surface 
area is obtained

With optimized synthesis condition, Fe-
diazine complex results in high
activity/high surface area catalysts with
low peroxide formation.
(2x initial screening current density)

Target
6 A/cm3
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Accomplishments: Traditional Synthesis 

Fe-diazine A Fe-diazine B
Element At% Wt% At% Wt%

C 91.5 88.2 93.3 90.8
O 4.7 6.1 4.6 6.0
N 3.3 3.7 1.9 2.1
Fe 0.5 2.1 0.2 1.1

Fe-diazine A Fe-diazine B
N-functionality At% At%

Pyridinic 51.9 47.7
Pyrrolic 32.9 32.5

Graphitic 10.3 10.7
Pyridinic N+O- 5.0 9.1

• X-ray photoelectron spectroscopy (XPS) used to 
determine surface composition.

• Atomic and weight percent of surface species were 
determined for C, O, N, and Fe.

• Nitrogen functionality determined
• To obtain a functional iron-based ORR catalyst, 

nitrogen atoms on the carbon support have to be of 
the pyridinic type1 and must be coordinated to iron.

• Traditional synthesis methods results in the 
preferential formation of N-pyridinic (51.9, 47.7 %).

• Iron loading reduction (2→1 wt%) studied performed 
without loss of performance  

1Faubert, G.; et al., Electrochim. Acta, 44 (1999) 2589
2Wood, KN, et al., Energy Environ. Sci., 7 (2014) 1212

Fe-diazine A

Fe-diazine B

2
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• RDE evaluation of heat-treatment 
on graphene oxide 

• GO was selected in order to 
provide sites where the NH3 can 
attack and dope the carbon

• The effects of the ammonia 
treatment results in significant 
currents at 0.8 V even in the 
absence of metal

• Kinetic current densities 0.6 A/cm3

have been obtained at the 
conditions

Accomplishments: Metal-free Catalysts

CV/RRDE: 0.1 M HClO4; 900 rpm; 25ºC;
RHE reference electrode; graphite counter
electrode; 20mV/s, 600 µg/cm2

The use of metal free carbon was evaluated, by heat treating oxidized 
graphene (GO)
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Accomplishments: CVD Synthesis 

• Carbon source and catalyst is injected and vaporized in pre-heater and carried into the
reactor furnace.  The nanomaterials grow in-situ inside the furnace during spray pyrolysis
of the precursor.

• The CVD system is outfitted with an ultraclean gaseous atmosphere and capabilities for
water-assisted growth

• Allows complete catalyst synthesis in 5-120 minutes depending on conditions

• We began growth using n-doping precursors in different gas atmospheres.

Schematic and picture of CVD system built
at SRNL to handle multi-gas mixtures.

N
Source
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Accomplishments: CVD Synthesis

3.5

Target
6 A/cm3

CV/RRDE: 0.1 M HClO4; 900 rpm; 25ºC;
RHE reference electrode; graphite counter
electrode; 20mV/s, 600 µg/cm2

• Kinetic current densities
1.0 A/cm3 have been
obtained

• Higher available surface
area and Fe2+/Fe3+

redox couple results in
higher ORR activity

• Lower ring currents are
observed than in the
traditional synthesis

• CV shows the effect of
growth on the
electrochemical
available surface area
as well as the functional
groups

• Sample shows high
Fe2+/Fe3+ redox couple

• Lower electrochemical
surface area is observed
than in the traditional
synthesis

High performance have been
obtained, though low surface area
was observed
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Accomplishments: CVD Synthesis

N-precursor in-situ with 
reducing carrier gas 

N-precursor in-situ with 
nitrogen doping carrier gas

Nitrogen doping gas 
needed to form 

defects and N-doping 
on the nanotube
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750 ºC

800 ºC

850 ºC

• Morphologically, the different samples look 
similar 

• The electrochemical performance is higher 
at the higher synthesis temperatures

• XPS will be performed to determine surface 
composition

Accomplishments: CVD Synthesis
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• Different surface modification methods are being explored as means to unlock
active sites and improve activity

• Chemical oxidation has been used in the past to open or “unzip” the CNTs
• This results in graphene sheets that stack easily and therefore are mass

transfer limited
• Mild oxidation is being performed as well as in-situ “unzipping” during growth

Chemically
Un-zipped CNTs

Accomplishments: CVD Synthesis
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• Using a mild chemical unzipping method we are able to partially open the surface of the CNT 
as well as exfoliate and roughen the surface of the tube

• This maintains the surface morphology, that allows the tube to form 3D structures when 
incorporated in the electrode

• The oxidized tube can then be further processed in order to decrease the oxygen content by 
replacing it with active groups and improve its stability

Accomplishments: CVD Synthesis

As prepared

After mild 
oxidation
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Reviewer Comments

• This project was not reviewed last year.
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Collaborations

• SRNL is working with OEMs as well as small business partners specializing in
nanomaterials synthesis and characterization that can help to rapidly move
technologies developed under this project to market:

• Ballard Power Systems
• Provide guidance on the commercial viability of catalyst production processes

and fuel cell products based on the nanotube NPMC catalysts
• Test promising catalyst samples

• NanoTechLabs
• Carbon nanomaterial provider
• Provide guidance on commercial scalability of n-doped nanotube production
• Test the feasibility of the developed recipes in commercial production furnaces

• Greenway Energy
• Characterization of traditional and CVD electrocatalysts
• Synthesis of traditional catalysts
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Remaining Challenges and Barriers

Activity
• Increase electrocatalyst activity by varying precursors, processing conditions, post-

treatments, and dopants
• The effect of varying relative amount of pyridinic and pyrrolic nitrogen will be explored

more in depth along with the impact on doping with metal catalysts

Durability
• Increase the durability of catalysts to degradation due to elevated electrochemical

potentials and aggressive fuel cell operating conditions
• Ensure that electrocatalysts cannot cause degradation to membranes or other cell

components during operation due to leaching of metals and formation of peroxides

Cost
• Cost reductions will be demonstrated through the use of CVD synthesis methods
• The ability to reduce the cost of electrocatalyst synthesis through CVD growth of

electrocatalysts will be demonstrated through techno-economic modeling
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Proposed Future Work

• Continue development of novel CVD growth mechanisms that can:

• Increase surface area and alter active site morphology through mild roughening
or opening of nanotubes through in-situ gaseous or ex-situ mild chemical
treatments

• Characterize the effect of higher temperatures and different nitrogen precursors
on active site morphologies, oxidation states, and electrochemically active
surface area

• Utilize novel carbon nanomaterials as supports for catalysts synthesized using
traditional synthesis techniques

• Explore the use of novel non-PGM bi-metallic catalysts incorporated using in-situ and
ex-situ synthesis techniques

• Provide materials to project partners for evaluation and comparison with state-of-the-
art materials
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Summary

• Established performance baselines for non-PGM electrocatalysts through traditional
synthesis processes using RRDE testing

• Screened nitrogen precursors and identified diazines as forming nitrogen groups that
have over 50% pyridinic nitrogen

• Optimized the synthesis of electrocatalysts using diazines to increase the number of
electrons to >3.6

• Demonstrated metal-free graphene-oxide electrocatalysts with significant currents at
0.8 V

• Chemical opening methods for nanomaterials has been developed to increase
available surface area while maintaining the overall nanotube structure

• Initiated synthesis and testing of in-situ nitrogen doped carbon nanotubes using
nitrogen containing liquid precursors and demonstrated >3.8 electron transfer in ORR
and high current densities at 0.8 V
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