Engineered Low-Pt Catalyst Layers

Mahlon S. Wilson Los Alamos National Laboratory June 8th, 2015

LA-UR-15-22924

Project ID FC125

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

1-year project

- Start date: 10/2014
- End date: 09/2015
- Percent complete: ~65%

Budget

Total project funding: \$500k

- LANL: \$350k
- LBNL: \$100k
- ORNL: \$50k

Barriers

- A. DURABILITY of low-Pt MEAs
- B. COST of current MEAs
- C. PERFORMANCE of low-Pt MEAs

Partners

- Lawrence Berkeley National Laboratory PI: Adam Weber
- Oak Ridge National Laboratory PI: Karren More
- Los Alamos National Laboratory

2

Relevance

A significant "extra" shortfall in FC performance is observed in standard MEAs when Pt loadings drop below ~ 0.1 mgPt/cm² that is manifested as an increased ionomer barrier to O_2 transport. Developing the means to correct this extra loss increases the performance and cost effectiveness of fuel cells.

- Objectives (over 1y project):
 - Introduce, model, and develop the materials and techniques for a new approach that focuses on an engineered ionomer topology (EIT) within the catalyst layer.
 - Attain 0.05 mgPt/cm² fuel cell performance that demonstrates the potential of the EIT approach

Approach: Engineered Ionomer Topology (EIT)

- Optimize the ionomer topology of the catalyst layer to minimize the shortfall
 - Many past investigations on support structures (e.g., MWCNTs, NSTFs, etc.) but not on intentionally engineering ionomer structure and distribution, which can provide a greater payoff
- Use two "Phases" of ionomer:
 - -1^{st} "thin-film" ionomer phase to coat the catalyst and provide local ionic continuity while minimizing the O₂ transport barrier.
 - The thinner the ionomer film the better
 - -2nd "nanofiber" ionomer scaffold phase to provide bulk conductivity/continuity and catalyst layer structural integrity.
 - High aspect ratio and durable ionomer component to provide ionic "highways"

Ideally, the EIT approach can be used directly in standard commercial MEA fabrication processes, wherein the catalyst layer is formulated and applied as an ink.

Conceptual configuration for description & modeling

Motivation for the ionomer nanofiber phase in the CCL

 The increased mass-transport resistance with lower Pt loading is attributed to the slow oxygen transport in the ionomer film (decrease in effective surface area for oxygen)**.

- By decreasing film thickness δ_{film},
- Benefit: the high oxygen transport resistance R_{O2, film} can be reduced.
 Drawback: the proton transport in the ionomer film becomes rate-limiting.
 2nd ionomer phase with high H⁺ conductivity (nanofiber) is needed to facilitate H⁺ conduction.

*AZ Weber, A Kusoglu, J. Mater. Chem. A, 2014, 2, 17207–17211 **W Yoon, AZ Weber, JECS 158 (8) B1007-1018 (2011)

Lawrence Berkeley National Laboratory | Environmental Energy Technologies Division

Milestones

Date	Milestone	Status	Comments
Dec 31, 2015	*Functionalize supports to > 1 site/nm ² .	Re-Approach	Bulk doping not high enough – go to surface functionalization
Mar 31, 2015	Synthesize high-aspect ratio ionomers with diameters < 500 nm. Platinize the supports.	lonomer Synthesis Achieved	Supports not yet ready for platinization
Jun 30, 2015 Annual Milestone	Demonstrate fabrication of engineered ionomer topology MEAs with ≤ 0.05 mg Pt/cm ² with reproducible loading variations of ± 0.02 and performance of > 550 mV at 1 A/cm ² and 100% RH, improving performance compared with 0.055 mg/cm ² Pt/PPPy demonstrated in FC010 in FY14.	Exceeded Performance Target	FC performance aspect of milestone met – Pt distributions not yet mapped.
Aug 30, 2015	Low-Pt EIT and GM baseline MEAs FC tested, characterized and compared.	Achieved	Two EIT cells already completed, compared with GM cells

*The ability of the solubilized ionomer to wet the catalyst is key to forming a highly dispersed phase 1 ionomer thin film. Indeed, the ideal ionomer film is only 1.5 nm thick (Slide 8). Consequently, a portion of this project investigated the synthesis of heteroatom functionalized supports to improve ionomer attraction without sacrificing support durability.

- Ionomers are in two phases, nanofibers and thin films.
- Protons transport from nanofibers (driving force) to thin films, ultimately arriving at the Pt sites around the agglomerate core.

*D Denver et al, Journal of Fuel Cell Science and Technology, AUG 2014, Vol. 11 / 041007-3

- The 70% nanofiber (30% film) case attains a maximum limiting current (with an optimal film thickness of 1.5 nm = 5 nm * 30%) by switching the rate-limiting step from oxygen permeation to proton conduction.
- At 0.6 V, a max current of 1.7 A/cm² is obtained from the case of 50% nanofiber (50% film).

- Oxygen diffusion is slow for low nanofiber fractions due to low O₂ concentration at the agglomerate core surface.
- Surface O₂ concentration approaches its bulk value at high nanofiber fractions.

Nanofiber fraction	Rate-liming transport		
0% (film only)	O ₂ diffusion		
10%	O ₂ diffusion		
50%	O ₂ diffusion		
60%	H^+ conduction in film		
70%	H^+ conduction in film		
90%	H^+ conduction in film		

Accomplishments Synthesis of Ionomer 2nd Scaffold Phase

Nafion[®] nanofibers by electrospinning

Micrographs of as-spun fibers fully dried at 60°C

> Typical Fiber Diameters (Fibers distorted by SEM electron beam under high magnification)

- Electrospun using commercial Nafion[®] solution
 - 1% PEO (polyethylene oxide) added (wrt ionomer) to facilitate spinning of ionomer suspension
 - Average fiber diameter slightly less than 500 μm^{\star}
 - Product mats have little physical integrity
 - Need to increase fiber toughness and durability

Accomplishments Formation of Robust 2nd Scaffold Phase

Ionomer-coated MWCNTs

- Coated using anhydrous hi-temp casting solutions & process* for maximum ionomer strength and durability
- MWCNTs provide electronic conductivity and rigidity (electrospun ionomers are too soft and malleable)
- Scaffold is gravimetrically close to 2:1 Nafion[®]/MWCNT
 - High and uniform ionomer dispersion
 - Porosity remains open and high
 - Readily suspends in solution

*Welch et al. (w/ Yu Seung Kim), ACS Macro Lett. 1, 1403-1407 (2012)

Protonated Nafion[®]/MWCN T scaffold phase in water

EDS indicates high and uniform ionomer content (F) within the MWCNTs

Apparently dense region is open and porous under higher magnification

Accomplishments

Formulation of Initial EIT MEA Inks

- Ink components:
 - -Scaffold 2nd Phase (~2:1 Nafion[®]/MWCNTs)
 - Specific surface area ~ 20 m²/g
 - -Pt/C catalyst (E-tech 20%Pt/XC72)
 - SSA ~ 220 m²/g
 - -Solubilized Nafion[®] thin film 1st Phase
 - Standard commercial 5 wt% H⁺ Nafion[®] solution
- Ink compositions for initial 2 MEAs:
 - -Equal amounts of catalyst and scaffold by weight
 - -Amount of 1st Phase "thin-film" ionomer varied
 - 1st ink has a low Nafion[®] solubilized ionomer content (LowNaf)
 - 2nd ink has a high Nafion[®] solubilized ionomer content (HiNaf)

In typical catalyst layer ink formulations, the solubilized ionomer needs to simultaneously provide catalyst access, structural integrity, and bulk conductivity. Here, the EIT approach attempts to separate and optimize the effectiveness of the individual functions, with the solubilized ionomer providing local ionic access to the catalyst and the scaffold ionomer providing bulk conductivity and catalyst layer integrity.

Accomplishments

MEAs and FC Testing

TEM of catalyst layer. MWCNTs outlined in green.

- MEAs fabricated by decal hot-press
 - Very nice decal wetting and coverage
 - Open, porous structure
 - Solids thoroughly intermingled
- FC Testing

SEM cross-section of single-sided MEA.

- FC Components
 - 50 cm² hardware
 - Catalyst: 20%Pt/XC72 (0.05 mg Pt/cm²)
 - Membrane: DuPont® XL
 - Cathode GDL: SGL 25BN
- Regimented side-by-side "3rd party" testing by the LANL durability team
- In-house comparison to GM baseline MEA results using similar catalysts, Pt loadings, components
 & hardware

Accomplishments

FC Testing of EIT MEAs

Accomplishments LowNaf EIT MEA vs. Baseline GM MEA

MEA	ECSA (m²/g)	CL thicknes s (μm)				
Low- Naf	31	10				
Type 3	47	7				
Scan rate = 50 mV/s						

- Comparison between EIT and Commercial MEAs
 - -Nearly equivalent performance
 - But only ⅔ the ECSA of the Type 3 MEA
 - Little or no kinetic hit
 - No optimization of the EIT MEA or process
 - Transport region losses, but thicker CL (catalyst layer)

Milestone

Collaborators and Contributions

Lawrence Berkeley National Laboratory

- -Adam Z. Weber (PI) modeling
 - •Huai-Suen Shiau modeling

Los Alamos National Laboratory

- -Mahlon S. Wilson (PI) EIT MEA development
 - •Yu Seung Kim anhydrous ionomer solutions
 - David Langlois FC testing
 - •Kwan Soo Lee anhydrous ionomer solutions
 - Rangachary Mukundan testing logistics
- Oak Ridge National Laboratory

-Karren More (PI) - imaging and characterization

Remaining Challenges and Barriers

Modeling

 The primary challenge is accurately capturing the true distribution and properties of the ionomer within the catalyst layer (e.g., conductivity & water uptake are thickness dependent).

EIT Catalyst layer development

- The modeling indicates that the optimal 1st phase thin film ionomer thickness is only 1.5 nm (about a monolayer), thus an enormous challenge is approaching this high degree of ionomer dispersion* while simultaneously minimizing agglomerate particle size
- The conventionally electrospun ionomers are not suitable for the fabrication of open, porous catalyst layers (too soft and malleable).
 Obtaining robust and durable unsupported ionomer nanofibers will be necessary to effectively achieve this particular EIT structure

*For example, if the entire 20wt% Pt/XC72 catalyst (220 m²/g) is coated with a monolayer of Nafion[®] that is 1.3 nm thick (per Bertoncello et al., *Phys. Chem. Chem. Phys.*, **4** 4036-4043 (2002)), the coated catalyst will be at least 37 wt% Nafion[®] (depending upon geometry).

Proposed Future Work

Modeling

- Study the effect of relative humidity on the performance curve
- Investigate the influence of connections between multiple nanofiber tubes, which becomes significant at high nanofiber fractions (crowded effect)
- Validate the model by experimental data, with tested empirical relationships that relate the oxygen permeability and proton conductivity to the film thickness

• EIT Catalyst Layer Development

- Improve the distribution of the 1st phase ionomer
 - Via functionalized supports
 - Directly functionalize nanofiber support surfaces (rather than bulk-doping)
 - Via directly enhancing the ionomer distribution (by ink formulation or processing)
- Improve properties of electrospun ionomers
 - Investigate spinning / curing process akin to "high-temp" casting to attain nanofibers with "bulk-like" ionomer properties
- Explore further generations of EIT catalyst layer configurations and thicknesses to understand the degree and significance of the individual component contributions (not an optimization effort)
- FC Testing
 - Further generations of EIT MEAs
 - Low RH operation
 - Preliminary durability testing

Technology Transfer Activities

- Project contributors have participated in various Tech2Market activities (e.g., the National Lab Showcase at the 2014 Fuel Cell Seminar), but thus far there have not been any tech transfer activities specific to this project.
- In the longer term, once clearly superior EIT catalyst layer formulations have been developed, the EIT components (or possibly actual inks), will be supplied to at least one commercial MEA supplier (per agreement) and offered to all interested domestic suppliers.
 - If results are obtained by the suppliers that suffice to stimulate their interest in acquiring the technology, our tech transfer organization (LANL Feynman Center of Innovation) oversees the process.

Summary

- Developed a catalyst layer nanofiber / thin-film model
 - Illustrates that adding the 2nd ionomer phase (nanofibers) dramatically increases performance
 - High ionic potential of the "bulk" nanofibers facilitates activity of the catalyst agglomerates
 - the 70% nanofiber (30% film) case achieves a maximum limiting current
 - O₂ concentration at the surface of the agglomerate core approaches its bulk value at high nanofiber fractions.
 - The optimal film thickness = 5 nm 30% = 1.5 nm (about a monolayer)
- Developed approach, materials, and processes for EIT catalyst layers
- Observed that the thin-film ionomer content in the EIT catalyst layer has a significant effect on transport and performance
 - Higher 1st phase ionomer loadings increase ECSA, but also catalyst layer tortuosity
- Using similar 20%Pt/C catalysts, an EIT MEA with low thin-film ionomer content approaches baseline commercial MEA performance
 - Un-optimized EIT cell close to commercial MEA despite only \sim^{2}_{3} the ECSA

<u>Conclusion</u>: the modeling and initial results demonstrate the substantial promise of the EIT catalyst layer approach to overcome the low-Pt performance shortfall

Technical Back-Up Slides

Boundary conditions and constants used in the modeling simulation

At the gas/film interface:

- (1) No proton flux
- (2) Bulk O₂ concentration is given as 0.005 mol/m³
 (assume uniform O₂ distribution in CCL macro pores)

At the film/nanofiber interface:

- (1) No oxygen flux (possibly limiting O_2 transport)
- (2) The ionic potential is determined by the film and nanofiber conductivities.

Properties:

- (1) The electronic potential is assumed to be 0.6 V uniformly throughout the CCL.
- (2) The agglomerate core radius (R_{agg}) is 50 nm, assumed to be constant while varying nanofiber fractions. The intrinsic H⁺ conductivity of the film phase is 0.001 S/cm at RH of 30%* and the intrinsic H⁺ conductivity of the nanofiber phase is 0.1 S/cm. The extensive H⁺ conductivities in two phases depend on the volume fraction of ionomer in each phase.
- (3) The oxygen diffusion coefficient in the film is $9.7E-6 \text{ cm}^2/\text{s}$. The O_2 transport resistance through film is assumed to be proportional to the film thickness.
- (4) When no nanofiber is present, the film is 5 nm in thickness, covering agglomerates of $R_{agg} = 50$ nm. With increasing nanofiber fraction (0 to 100%), the film will get thinner, favorable for O_2 transport but unfavorable for H⁺ conduction.
- (5) The volume fractions of carbon and ionomer in the CCL are 0.363 and 0.334, respectively. The specific Pt surface area per unit CL volume is 10⁵ cm⁻¹.

*Self-Assembly and Transport Limitations in Confined Nafion Films, Macromolecules 46, no. 3 (2013): 867-873

Thin-film proton conduction is sluggish for 70% and 90% nanofiber: significant decrease in the film potential

Lawrence Berkeley National Laboratory | Environmental Energy Technologies Division

Bulk Heteroatom Functionalized Supports

- Intent is to form bulk functionalized carbon supports adding heteroatoms (e.g., B, P) to improve durability & wettability over N doped alone.
- Pyrolyzed PAN/Phos-Acid Nanofibers
 - Fibers formed by electrospinning
 - Oxidatively stabilized & cross-linked
 - Pyrolyzed in various gas atmospheres
- Results:

SEMs

- Low graphitization (retarded by phos-acid?)
- Low heteroatom surface compositions (but bulk P up to 4% by EDS)
- Appreciable surface contamination by Si, K, Na.

Surface Composition (at.%)										
С	0	Ν	Р	Si	К	Na				
84.1	8.9	3.4	1.5	0.8	1.1	0.1				
83.8	9.5	3.6	0.4	2.7	0.0	0.1				
82.2	11.9	1.7	1.5	1.9	0.6	0.1				
89.9	3.7	3.9	1.8	0.5	0.0	0.2				
	2 84.1 83.8 82.2 89.9	C O 84.1 8.9 83.8 9.5 82.2 11.9 89.9 3.7	C O N 84.1 8.9 3.4 83.8 9.5 3.6 82.2 11.9 1.7 89.9 3.7 3.9	C O N P 84.1 8.9 3.4 1.5 83.8 9.5 3.6 0.4 82.2 11.9 1.7 1.5 89.9 3.7 3.9 1.8	C O N P Si 84.1 8.9 3.4 1.5 0.8 83.8 9.5 3.6 0.4 2.7 82.2 11.9 1.7 1.5 1.9 89.9 3.7 3.9 1.8 0.5	C O N P Si K 84.1 8.9 3.4 1.5 0.8 1.1 83.8 9.5 3.6 0.4 2.7 0.0 82.2 11.9 1.7 1.5 1.9 0.6 89.9 3.7 3.9 1.8 0.5 0.0				

400

396

392

408

MEA Impedance Spectra

 The cells are very similar in the kinetic region, but at high current densities substantial gas transport losses are incurred in the HiNaf cell

