

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

Don Baldwin, Principal Investigator/Presenter Hexagon Lincoln June 10, 2015

Project ID# PD021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: July 2008
- Project end date: June 2015

Budget

- Total Project Budget: \$4.594M
- Total Recipient Share: \$1.824M
- Total Federal Share: \$2.770M
- Total DOE Funds Spent*: \$2.178M
- * As of 3/31/15

Barriers

Barriers addressed

E. Gaseous Hydrogen Storage and Tube Trailer Delivery CostsI. Other Fueling Site/Terminal Operations

Partners

- Discussions with ABS on pressure vessel qualification
- Discussions with US DOT regarding Special Permits for modules and trailers in USA
- Discussion with and input to ANL for Hydrogen Refueling Station Cost Reduction
- Extensive testing at Powertech Labs and Stress Engineering Services

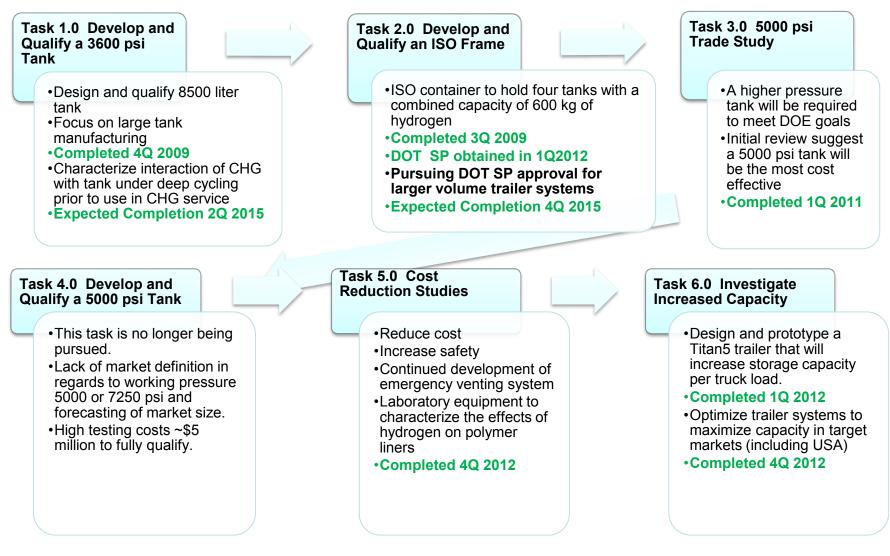
RELEVANCE

- Relevance: to reduce the cost of a near-term means of transporting gaseous H₂ from the production or city gate site to the station.
 - Design and develop the most effective bulk hauling and storage solution for hydrogen in terms of cost, safety, weight, and volumetric efficiency. This will be done by developing and manufacturing a tank and corresponding ISO frame that can be used for the storage of hydrogen in a stationary or hauling application. Complete 4Q 2009.
 - Based on current knowledge of tube trailer design, carry out preliminary design and qualify a 3600 psi tank and ISO frame that will hold 510000 in³ (~8500L) water volume. Complete 4Q 2009.
 - Complete trade studies needed to increase vessel capacity by increasing pressure to 5000 psi (ultimately exceeds the DOE's FY10 capacity target by >15%). Complete 1Q 2011.
 - Complete the enhancement of the 250 bar system with respect to capacity (> 700 kg/liter) and safety (fire protection). Complete 4Q 2012.
 - First deployment of TITAN Magnum trailer in CNG service. 2Q 2013.
 - First deployment of TITAN XL40 trailer in CNG Service. 1Q 2015.
 - Filling/decanting demonstration with compressed H₂. 2Q 2015.

OBJECTIVES-TECHNICAL TARGETS 2010/2015*

Hydrogen delivery targets	ISO container with four 3600 psi tanks (FY 2009 Work Scope)
\$500/kg of hydrogen stored by FY2010, \$300/kg by FY2015	The TITAN Module, with four tanks installed, met the \$500 per kg hydrogen objective in 2010. However, since 2010 increases in market prices for materials of construction (specifically carbon fiber and specialty forgings) have forced us to increase our current pricing to about \$800/kg (1Q 2013). [We have strong domestic and international sales of our high- capacity modules and trailers at this price level for CNG.]
Volumetric capacity 0.03 kg/liter by FY2010, >0.035 kg/liter by FY 2015	The baseline tank has a capacity of 150 kg hydrogen in a volume of ~8500 liters, achieving a performance of ~0.018 kg/liter.
Tube trailer delivery capacity 700 kg by FY2010 and 1,140 kg by FY2017	The current ISO assembly, with four tanks installed, will contain approximately 616 kg of hydrogen. At 90% hauling efficiency, delivery of 555 kg of hydrogen

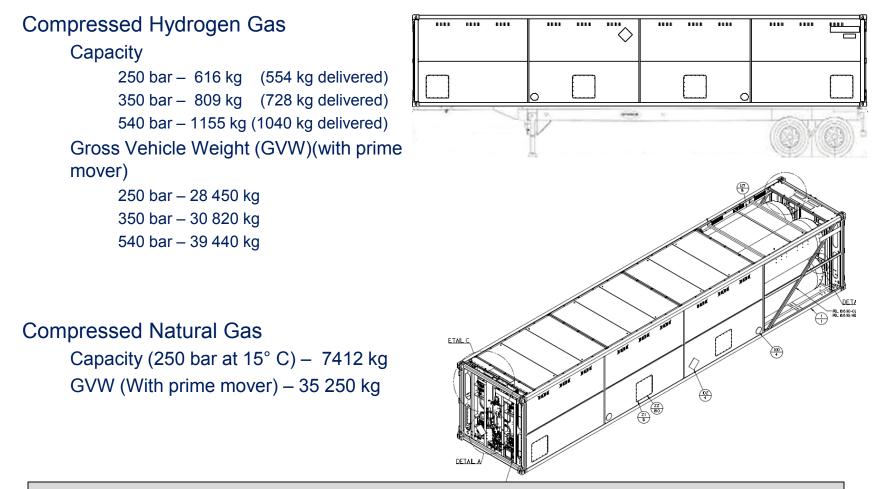
* Based on the Fuel Cell Technologies Office 2007 MYRD&D



OBJECTIVES-TECHNICAL TARGETS 2015/2020

Hydrogen delivery targets	ISO container with four 3600 psi tanks (FY 2009 Work Scope)
\$730/kg of hydrogen delivered by FY2015, \$575/kg by FY2015	The TITAN Module, with four tanks installed, met the \$500 per kg hydrogen objective in 2010. However, since 2010 increases in market prices for materials of construction (specifically carbon fiber and specialty forgings) have forced us to increase our current pricing to about \$800/kg (1Q 2013). [We have strong domestic and international sales of our high-capacity modules and trailers at this price level for CNG.]
Delivery Pressure 400 bar by FY2015, 520 bar by FY2020	The current delivery pressure is 250 bar. Design and trade studies have been performed which indicate that a delivery pressure of 350 bar is optimal for TITAN modules/trailers. Higher pressures are achievable but would require extensive redesign and retooling of the manufacturing infrastructure.
Tube trailer delivery capacity 700 kg by FY2015 and 940 kg by FY2020	The Titan module system, (four large tanks) contains approximately 616 kg of hydrogen. At 90% hauling efficiency, delivery of 555 kg of hydrogen The Titan V Magnum, (5 large tanks and 9 small tanks) contains approximately 800 kg of hydrogen. At 90% hauling efficiency, delivery of approximately 720 kg of hydrogen. The Titan V XL40 (5 large tanks and 7 medium tanks) is being developed and will contain approximately 890 kg of hydrogen. At 90% hauling efficiency, delivery of approximately 800 kg of hydrogen. 5

APPROACH/MILESTONES


- Completed the design, manufacture and assembly of ISO format container (standard dimensions) capable of storing ~616 kg H2 @ 3600 psi.
 - Successful completion of all qualification tests for a 3600 psi pressure vessel per ABS Document No. ABSHOU557163
 - Completed Testing of Container per CSC 49 CFR Part 451
 - DOT Special Permit 14951 issued 22 February 2012
- 2014 saw continued evolution of module functionality and safety systems with accumulation of field experience in CNG service
 - Different jurisdictions
 - Different environments

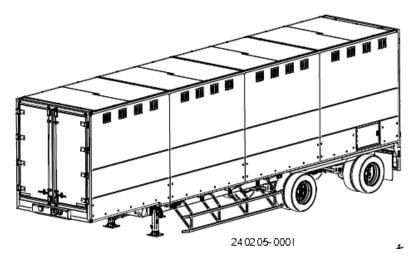
Gaining real world experience in fuel gas distribution

HEXAGON LINCOLN TITAN™ Module System

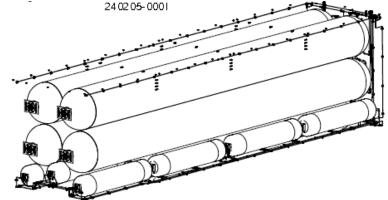
Highly modular system with increased volume and light weight

- Completed the design, manufacture and assembly of integrated TITAN V Magnum trailer system capable of storing ~800 kg H2 @ 3600 psi.
 - Maximum width and height allowed on Interstate Highway System
 - Gross Vehicle Weight within limits for Interstate up to 350 bar
- 2013 saw first deployment of TITAN V Magnum systems in CNG service
 - Very good handling characteristics (low center of gravity) and functionality
- 2015 introduction of TITAN V XL40 will increase storage to ~890 kg H2 @ 3600 psi

Our first trailer systems are performing well in CNG service

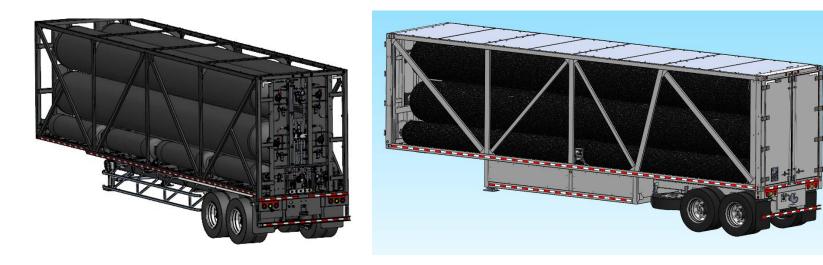


HEXAGON LINCOLN TITAN™ V Magnum Trailer System


Compressed Hydrogen Gas

Capacity

250 bar – 800 kg (720 kg delivered) 350 bar – 1050 kg (907 kg delivered) 540 bar – 1500 kg (1350 kg delivered) GVW (with prime mover) 250 bar – 31 000 kg 350 bar – 34 200 kg 540 bar – 45 700 kg

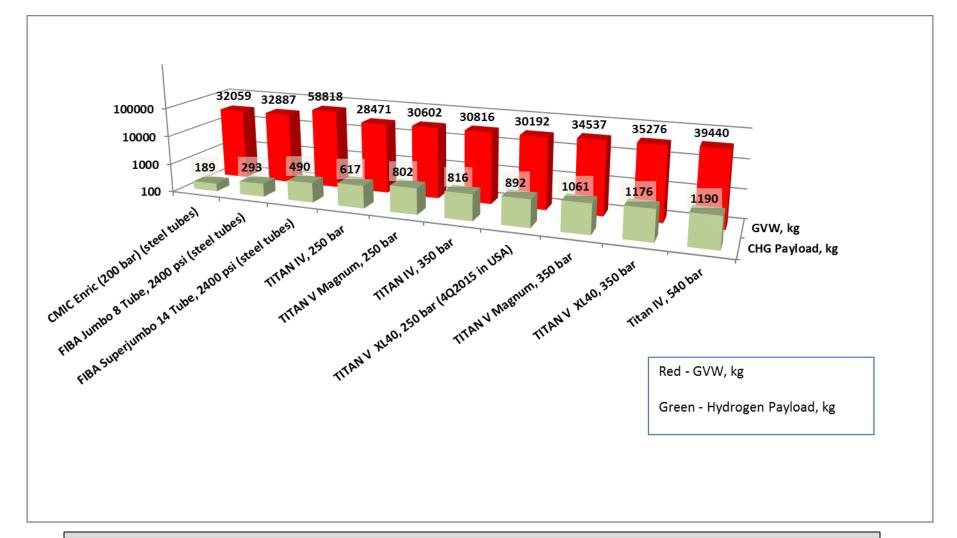

Compressed Natural Gas Capacity (250 bar at 15 C) – 9649 kg GVW (With prime mover) – 39 830 kg

Integrated trailer system allows increased lading with excellent roadability 10

MAGNUM VS XL40

	Magnum <mark>(-0005)</mark>	XL40	Improvement %
Volume in Liters	≈ 43,810	≈ 49,250	11.4%
Trailer Frame Weight in Kg (Lbs)	≈ 7,725 (17,000)	≈ 6,500 (14,330)	-18.8%
Tank and CNG Weight in Kg (Lbs)	≈ 21,819 (48,103)	≈ 23,023 (50,757)	5.2%
Trailer Weight (Trailer + Gas) in Kg (Lbs)	≈ 32,000 (70,547)	≈ 32,000 (70,547)	N/A
Dimensions (W x L x H)	8'-2" x 40' x 13'-11.75"	8'-6" x 40' x 13'-11.5"	N/A

XL40 First Unit


- Trade Studies Performed to Maximize Cost Effectiveness of Modules/Trailers
- More Hydrogen Capacity and Lower GVW Reduce
 Operating Expenses
- 350 bar TITAN[™], TITAN V Magnum[™] and TITAN V XL40 Systems Would be a Logical Next Step
 - 2.4 SR Design Fits ISO Frame and Trailer Widths
 - From .018 to .024 kg H₂ per Liter
 - Increased Payload
 - 616 to 816 kg H₂ Capacity for TITAN[™]
 - 801 to 1051 kg H₂ Capacity for TITAN V Magnum[™]
 - 889 to 1205 kg H₂ Capacity for TITAN V XL40
 - 5% reduction in \$ per kg H₂ [capital expenditure for rolling stock only]

- Practical Limit in Industry is 350 bar
 - Higher pressures exacerbates thick-wall effects in pressure vessel and reduces strength translation
 - Limited availability of high-flow gas management components at higher pressures
 - Availability/reliability of high-volume H₂ Compressors
- Need Solid Definition of Market Size and Operating Parameters [i.e.; 350 bar vs 540 bar] before a Business Case Can be Made for Investment in Qualification at a Higher Pressure
- ARNL has conducted trade studies to determine optimized configurations for tube trailers; E.G., using a consolidation approach with a mix of 250 bar and high-pressure tankage

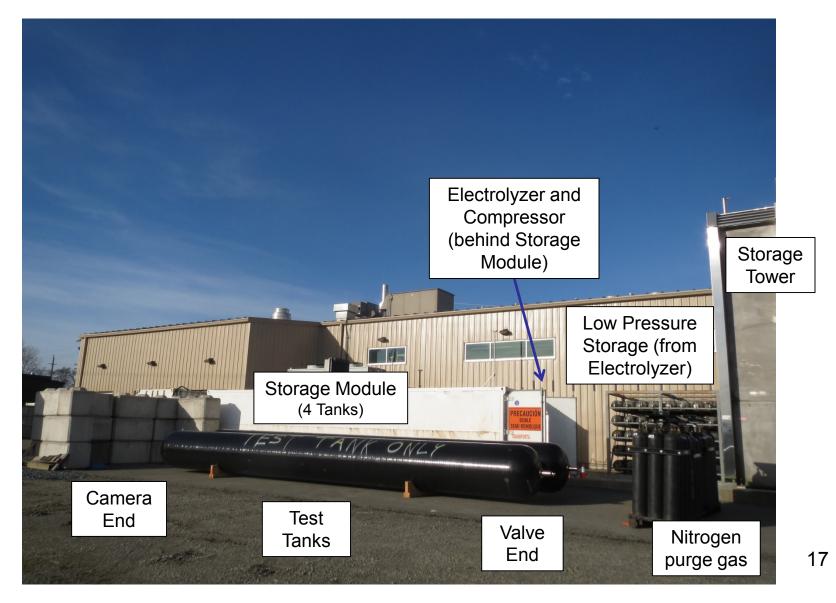
Operational and business issues are being studied. Answers soon?

HEXAGON

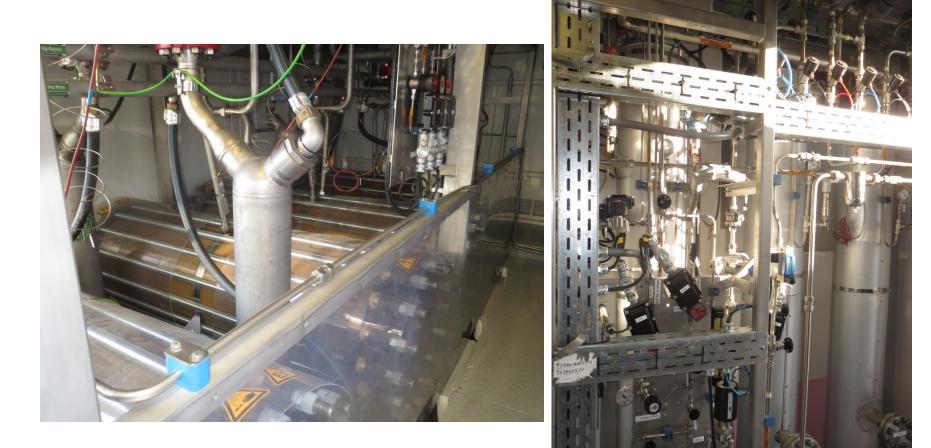
LINCOLN

TITAN systems are raising the bar for fuel gas transport

HEXAGON

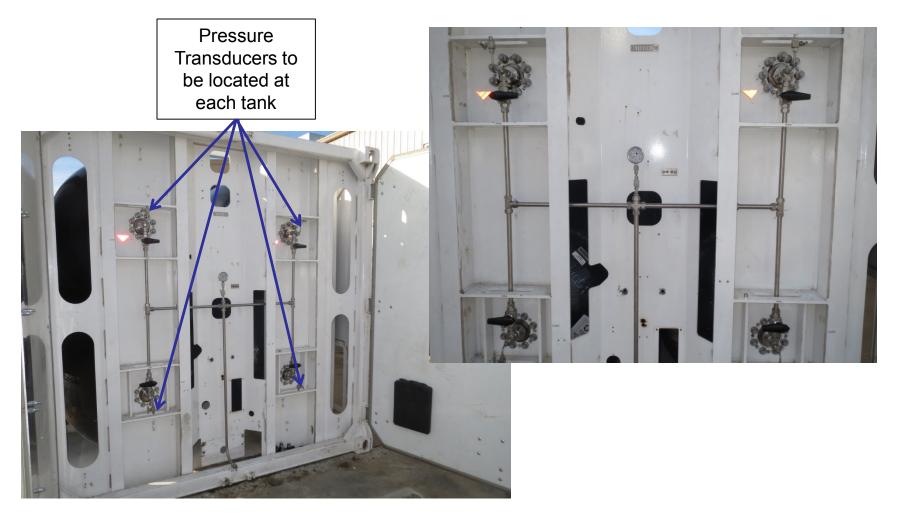

LINCOLN

- H₂ Deep Cycle Test Plan
 - First fill of TITAN[™] tanks with CHG
 - Two TITAN[™] tanks are test specimens
 - Four TITAN[™] tanks are accumulators
 - Transfer H2 between test units 3 to 4 times
 - Monitor temperature and pressure
 - Monitor for H₂ emission
 - Monitor for liner stability
 - Inspect condition of tanks

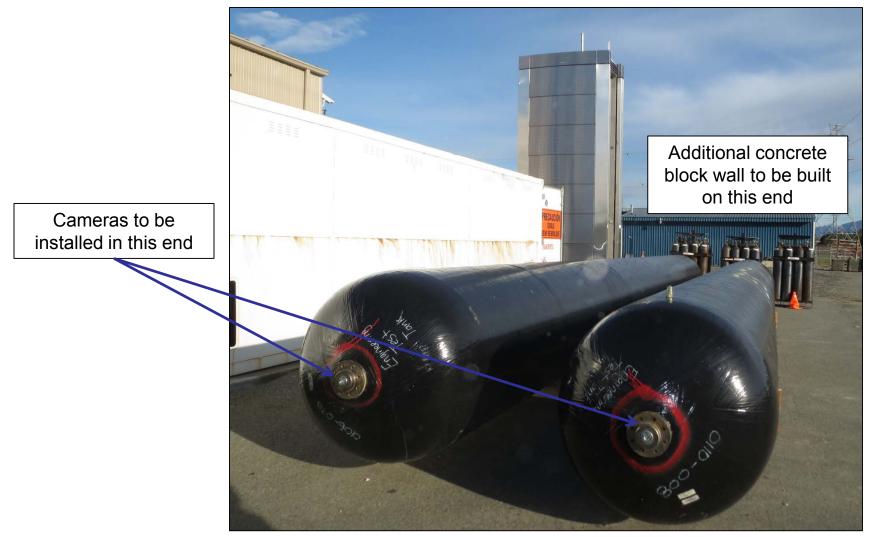


Test Setup at Powertech Labs

Electrolyzer Room at Powertech Labs



Compressor Room at Powertech Labs



TITAN[™] Storage Module (H₂ Accumulators)

TITAN[™] Test Specimens

H₂ Deep Cycle Test Timeline

- Setup complete mid April 2015
- First fill complete mid to late April
- First transfer early May
- Finish remaining cycles in May
- DOE personnel to visit mid May

COLLABORATIONS

- American Bureau of Shipping on qualification of existing and potential changes to composition of current pressure vessels.
- Lincoln Composites has received Special Permit from the U.S. DOT authorizing the manufacture, making, sale and use of the Titan bulk hauling 4 cylinder module in February 2012.
- Discussion with and input to ARNL for Hydrogen Refueling Station Cost Reduction studies
- Lincoln Composites has initiated Special Permit discussions with U.S. DOT towards authorizing the manufacture, making, sale and use of the Titan 5 bulk hauling trailer systems
- Extensive testing activities
 - Powertech Labs
 - Stress Engineering Services

REMAINING CHALLENGES AND BARRIERS

- Experience with deep cycling of TITAN pressure vessels with CHG is needed to define operating protocols for use of TITAN systems in CHG service at 250 bar
- U.S. DOT Special Permit approval is needed prior to the manufacture, making, sale and use of Titan V trailer systems in the United States

FUTURE WORK

- A program of deep cycle testing of TITAN pressure vessels with CHG will be performed in 1Q and 2Q 2015
 - Characterize CHG-specific operating protocols for use of TITAN systems in CHG service at 250 bar
- Hexagon Lincoln will prepare and submit an application for Special Permit approval with U.S. DOT for the manufacture, making, sale and use of Titan V trailer systems in the United States
 - Initial discussions with DOT indicate structural testing is required

SUMMARY

- Hydrogen delivery and storage are key to the roll out of PEMFC technology
- Low cost, near-term delivery pathways such as tube trailer transport will enable early adoption of these technologies
- Developing a bulk storage unit that can be transported on an ISO frame or integrated into a trailer is a critical part of this strategy

Technical Targets			
DOE Goals	Estimated Results		
\$500/kg of hydrogen stored by FY2010, \$300/kg by FY2015	3600 psi - \$800 per kg of H2		
Volumetric capacity 0.03 kg/liter by FY2010, >0.035 kg/liter by FY 2015	Current 3600 psi tank – 0.018 kg/liter		
Tube trailer delivery capacity 700 kg by FY2010 and 1,100 kg by FY2017	3600 psi (4-tube ISO container) - contains 616 kg of hydrogen, 555 kg deliverable at 90% efficiency.		
Tube trailer delivery capacity 700 kg by FY2015 and 940 kg by FY2020 (DRAFT)	 3600 psi (4-tube ISO container) - contains 616 kg of hydrogen, 555 kg deliverable at 90% efficiency. 3600 psi (5-tube trailer with additional 9 tanks) – contains 800 kg of hydrogen, 720 kg deliverable at 90% efficiency. 3600 psi (5-tube trailer with 7 intermediate tanks) – to contain 890 kg of hydrogen, 800 kg deliverable at 90% efficiency. 		
Tube trailer operating pressure goal is <10,000 psi by FY2012	Current module configuration is 3600 psi		