High-Performance, Long-Lifetime Catalysts for Proton Exchange Membrane Electrolysis

Hui Xu (PI)
Giner Inc.
Newton, MA

June 11, 2015

Project ID#: PD103

This presentation does not contain any proprietary or confidential information
Project Overview

Timeline
- Project Start Date: 4/22/2013
- Project End Date: 4/21/2015
- Percent Complete: 99%

Budget
- Phase 2
 - Total Project Value: $999,983
 - Total Funding Spent: $902,915*
- Phase 2b
 - Total Project Value: $999,999
 - Start on April 22, 2015
- Cost Share Percentage: 0% (SBIR)
* as of 3/31/15

Partners
- NREL: Dr. Bryan Pivovar (Co-PI)
- 3M: Dr. Krzysztof Lewinski (Co-PI)
- UMass-Lowell: Dr. Zhiyong Gu
- ORNL: Dr. Karren More

Barriers Addressed
- High precious group metal (PGM) loading (Ir loading >2mg/cm²)
 - Low catalytic activity for oxygen evolution reaction (OER)
- Low system efficiency
 - Significant anode over-potential
- Prohibitive PEM electrolysis cost
Relevance

- DOE H₂ Production Target for Electrolysis

Technical Targets: Distributed Forecourt Water Electrolysis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Units</th>
<th>2015</th>
<th>2020</th>
<th>Giner Status (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Levelized Cost</td>
<td>$/kg-H₂</td>
<td>3.90</td>
<td><2.30</td>
<td>3.64³ (5.11)⁴</td>
</tr>
<tr>
<td>Electrolyzer Cap. Cost</td>
<td>$/kg-H₂</td>
<td>0.50</td>
<td>0.50</td>
<td>1.30 (0.74)⁵</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>%LHV (kWh/kg)</td>
<td>72 (46)</td>
<td>75 (44)</td>
<td>65 (51)</td>
</tr>
<tr>
<td>Stack</td>
<td>%LHV (kWh/kg)</td>
<td>76 (44)</td>
<td>77 (43)</td>
<td>74 (45)</td>
</tr>
</tbody>
</table>

¹ 2012 MYRDD Plan. ² Production Only. ³ Utilizing H₂A Ver.2. ⁴ Utilizing H₂A Ver.3 (Electric costs increased to $0.057/kW from 0.039$/kW). ⁵ Stack Only

- Objectives

• Develop advanced, low PGM loading catalysts for high-efficiency and long lifetime PEM water electrolysis
 - Improved both mass and specific activity
• Evaluate the impact of newly developed catalysts on the PEM electrolyzer efficiency and cost
 - Materials and system cost analysis
Technical Approaches

Iridium Black

On Support
- Sputtering
- Chemical reduction
- Mechno-chemcial

and

Various Supports
(Giner)

Nanostructured Thin Film
(3M)

Corrosion and Activity Screening
(Giner and NREL)

Characterization
(X-Ray, microscopies...)
(NREL)

Electrolyzer MEA Tests (Giner and 3M)

No Support
- Ag nanowire-aided

Current State of the Art

Iridium Nanotubes
(NREL)

Short Production and Cost Analysis (Giner, NREL and 3M)
Fulfilled Milestones

<table>
<thead>
<tr>
<th>Number</th>
<th>Milestones</th>
<th>Delivery Time</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SAMPLE PREPARATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 samples of supported catalysts (5g for each) - Giner</td>
<td>10/31/2013</td>
<td>95%*</td>
</tr>
<tr>
<td></td>
<td>5 samples of NSTF based MEAs (2g for each) - 3M</td>
<td>10/31/2013</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>5 samples of iridium nanotube catalysts (1g for each) - NREL</td>
<td>10/31/2013</td>
<td>95%*</td>
</tr>
<tr>
<td>2</td>
<td>Corrosion/oxidation resistance ≥ 1.8 V</td>
<td>1/31/2014</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Performance Metrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PGM < 0.5 mg/cm2</td>
<td>7/31/2014</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>1.7 V@ 1A/cm2 target</td>
<td>7/31/2014</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>> 100 h at 1.5 A/cm2</td>
<td>7/31/2014</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>Durability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 20 mV drop after 1000 hours at 1.5A/cm2</td>
<td>1/31/2015</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>Commercialization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delivering 100' of roll-to-roll produced catalyst</td>
<td>1/31/2015</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Not 100% completion due to large volume catalyst production needed
Achievement 1: Ir/W_{x}Ti_{1-x}O_{2} Catalyst (Giner)

- Supports with high oxidation resistance needed as electrolyzers operate at high Voltage
- Ir NPs form a “chain-like” network of interconnected NPs on the surface of the W_{x}Ti_{1-x}O_{2}

Images taken by Dr. Karren More at ORNL
Ir/ W\textsubscript{x} Ti\textsubscript{1-x}O\textsubscript{2} achieves 3x higher activity than baseline Ir black (at 2.0V)

Ir/ W\textsubscript{x} Ti\textsubscript{1-x}O\textsubscript{2} also demonstrates excellent stability during voltage cycling

Ir mass activity increases as Ir loading decreases

Scan rate: 50 mV/s; **RPM**: 1960 rpm; **Ir loading**: 40-80 µg/cm2; **Solution**: 0.5M H\textsubscript{2}SO\textsubscript{4}
Stack MEA Performance Using Ir/ $W_xTi_{1-x}O_2$ Catalyst

- 0.25 mg/cm2 Ir/ $W_xTi_{1-x}O_2$ demonstrates comparable performance to standard (2.5 mg/cm2 PGM)-reduced PGM loading by 10x;
- 0.25 mg/cm2 Ir/ $W_xTi_{1-x}O_2$ shows 65 mV lower voltage than 0.5 mg/cm2 Ir black
Durability of Ir/ W_xTi_{1-x}O_2 Catalyst

- Minimal voltage loss after cycling from 1.4 to 1.8V
- 1000 hours durability tested completed with only 20 mV performance decay
 - Passed Milestone 4
Some Ir NP precipitate in membrane after testing (to distance of ~2 µm)
Ir NPs agglomeration occurs due to Ir dissolution and migration to surfaces
Achievement 2: Ir Coated Whiskers on Nano-Structured Substrate (3M)

- Ir-NSTF anode demonstrates comparable performance to standard anode but at 1/8 Ir loading and 1/16 PGM loading
Optimum catalyst loading from the performance point of view appears to be around 0.2-0.4 mg/cm² PGM.
Durability of Ir-NSTF Catalyst

♦ 1000 hours durability completed nearly without performance decay
 - Passed Milestone 4
♦ Cycling from 1.4 V to 2.0V demonstrates the stability of Ir-NSTF catalyst

Cell 1: 725 EW, 100 µm and 90 °C
- Cathode: 250 µg/cm² Pt
- Anode: 250 µg/cm² Ir
- Test Cycle: Cycling from 1.4 V to 2.0 V, hold for 24-h at 1.5 A/cm²

Cell 2: 825 EW, 50 µm, 80°C
Roll-to-Roll Production of Ir-NSTF Catalysts

- Roll-to-roll production of Ir-NSTF has been successfully completed
Achievement 3: Ir/Metal Nanowires (NREL)

- Extended Continuous Nano-Structured Catalysts
- Partial Galvanic Displacement
 - “Thrifting” of the iridium layer
 - Various metal templates (Ag, Ni or Co)
- Ir Loading can be further controlled by acid leaching
Increased compositions of IrCoNWs were investigated.

- Trends for higher mass and specific activity at lower displacement levels.
- Majority of Co leaches out.

Acid leaching completed by exposure material (30 mg) to 3 M sulfuric acid (15 ml) for 16 h at room temperature.

Acid leached samples showed similar performance, but much better durability (next slide).
Almost no loss in mass activity for acid leached samples
Greatly reduced Ir and Co dissolution rates when measured by ICP-MS.
Both IrCo and IrNi NWs show greatly increased activity (~10x) compared to iridium nanoparticles.
MEA Performance of Three Catalysts

- All three categories of catalysts demonstrated better performance than low PGM loading control 0.4mg/cm² Ir black
Ir-based OER catalysts for PEM electrolysis have been successfully synthesized
- Giner: \(\text{Ir/}W_x\text{Ti}_{1-x}\text{O}_2 \)
- 3M: Ir-NTSF
- NREL: IrCo and IrNi nanowires (NWs)

Giner: \(\text{Ir/}W_x\text{Ti}_{1-x}\text{O}_2 \) catalyst based MEA demonstrated excellent performance
- A 6-cell electrolyzer stack test: The catalyst matched Giner baseline but reduced Ir loading by 10x
- Single cell test: successfully passed 1000-h test with 20 mV voltage decay
- Catalyst and MEA structures were obtained

3M: Durability test and mass production of IrNSTF catalysts
- Comparable to standard anode with 8x lower PGM loading
- Two MEAs passed 1000-h test nearly with negligible performance loss
- Roll-to-roll production of IrNSTF catalysts accomplished

NREL: Activity and Durability of Ir-metal nanowires investigated
- RDE data shows that both IrCo and IrNi NWs had 10x activity compared to Ir nanoparticles
- Acid leaching significant improved the catalyst IrCo and IrNi NWs durability
Collaborations

<table>
<thead>
<tr>
<th>Institutions</th>
<th>Roles</th>
</tr>
</thead>
</table>
| **Giner Inc. (Giner)**
Hui Xu (PI), Brian Rasimick, Allison Stocks, and Michael Smith | Prime, oversees the project; broad screening of catalyst supports; electrolyzer hardware design and validation; electrolyzer cell tests, cost analysis; catalyst and MEA test protocol |
| **National Renewable Energy Laboratory (NREL)**
Bryan Pivovar, Shaun Alia, K. C. Neyerlin | Sub; iridium/metal nanowires development, iridium surface area characterization; catalyst and MEA test protocol |
| **3M Company (3M)**
Krzysztof Lewinski, Sean Luopa | Sub; IrNSTF based catalyst development, electrolyzer cell tests, short production, cost analysis |
| **Oak Ridge National Laboratory (ORNL)**
Karren More | Collaborator: catalyst and MEA structure characterization |
| **Univ. of Massachusetts at Lowell (UMass-Lowell)**
Zhiyong Gu and Gao Fan | Collaborator: catalyst composition and structure analysis |

Great team with complementary expertise leads to a big success of project!
Future Research

• Test Ir/ $W_x Ti_{1-x}O_2$ catalyst at high Ir loading (1-2 mg/cm2) to study its effect on over-potential;

• Further improve the performance and durability of Ir/ $W_x Ti_{1-x}O_2$ by varying Ir deposition approaches;

• Test the MEA durability of three developed catalysts at more harsh conditions and extended hours;

• Select catalysts for Giner sub-MW electrolyzer stack construction
Phase 2B Project Work Plan

Tasks and Yearly Milestones

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Task 1: Scale up Selected Catalyst Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Ir/W-TiO2 synthesis scale-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. IrNSTF synthesis scale-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Task 2: Fabrication of Composite Electrolytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Ir/W-TiO2 based MEA fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. IrNSTF based MEA fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Task 3: Extend Durability Tests of Selected Catalysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. AST via Voltage Cycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Electrolyzer Endurance Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Task 4: Build low-PGM loading sub-MW Stack (Giner)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Task 5: Evaluate and Demonstrate sub-MW Electrolyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Task 6: Perform Catalyst and System Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Program Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestones

- **M2, M4, M6, M8, M10, M12, M14, M16, M18, M20, M22, M24**
Acknowledgments

- Financial support from DOE SBIR/STTR program under the contract # DE-SC0007471
- DOE Fuel Cell Technologies Office
 - Dr. David Peterson
- Giner Personnel
 - Brian Rasimick, Michael Smith, Monjid Hamden, Tim Norman, and Corky Mittelsteadt
- NREL: Bryan Pivovar, Shaun Alia, K. C. Neyerlin; Shyam Kocha
- 3M: Krzysztof Lewinski and Sean Luopa
- ORNL: Karren More
- UMass-Lowell: Drs. Zhiyong Gu and Gao Fan
Answers to Reviewers’ Comments

• There was a lack of focus on the best performing catalyst. Working with Ir puts the project at a cost disadvantage.

 Answer: Two metals, Ir and Ru, exhibit high OER activity for acid-based water electrolysis; but Ru is very unstable. Therefore, Ir is the most appropriate OER catalyst for PEM water electrolysis in terms of activity and stability. Our efforts have reduced the Ir loading by a factor of 10 thus significantly lowering the capital cost associated with Ir usage.

• The researchers need to better understand the catalyst support interaction. Longer-term testing is needed, as well as cycle testing. The cycle testing is particularly important because the electrolyzer will be turned on and off repeatedly. They need to focus more on increasing the catalyst activity.

 Answer: Both long-time test (1000 hours) and accelerated tests have been applied to study the durability of the developed catalysts. High resolution TEM images have been obtained with the help of Dr. Karren More at ORNL to understand support interaction.

• The RDE measurement should also be extended to NSTF catalysts if possible. TiO2-supported Ir catalysts with a higher Ir-loading (>60 wt.%) should be tested.

 Answer: TiO2-supported Ir catalysts with a higher Ir-loading (>60 wt.%) has been synthesized. RDE of NSTF catalyst has not been performed due to some experimental restriction.

• Significant progress was made during the past year. However, the different types of catalysts should be compared on the same basis. One of the other speakers indicated that NSTF had durability issues. Fabrication difficulties and costs were not addressed. If

 Answer: On Slide 19, all the three categories of catalysts are compared in one figure under similar electrolyzer operating conditions. NSTF demonstrated excellent durability based on 1000-hour tests.

• Xu, H., “Novel Oxygen Evolution Catalysts for Proton Exchange Membrane Water Electrolysis”, to be presented in in 224th meeting of ECS, Abstract #1239, Cancun, Mexico, October 2014.