Monolithic Piston-Type Reactor for Hydrogen Production through Rapid Swing of Reforming/Combustion Reactions

Project ID #PD111

PI: Wei Liu
Pacific Northwest National Laboratory
6/11/2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

- Start – November 2014
- End – October 2017
- 15% Complete

Budget

- Total Project Budget – $2,755K
- Total Recipient Share – $555K
- Total Federal Share – $2,200K
- Total DOE funds spent* – $350K
 *as of 3/31/15

Barriers

- Barriers addressed:
 - Plant capital cost and efficiency (unit scale of economy)
 - Operations and Maintenance (O&M)

- Target:
 - Cost of distributed H_2 from bio-mass to <4/Kg H_2

Partners

- Cormetech
 - Monolith support
 - Catalyst/sorbent commercialization
- Washington State University
 - Reforming catalysis and kinetics
- Dason Technology
 - Integrated test apparatus
 - Process development
Relevance - H2A analysis (HPTT feedback)

Impacts of production technology innovations on H₂ cost

- $0.98/gal; 1 kg H₂ / 9 kg bio-oil
- 28% lower capital via simplified processing
- 50% reduced operation costs via efficient energy integration
- 49% lower bio-oil cost

* PNNL-23053, NREL/TP-5100-61178
** S Czernik et al, 2010 AMR, Washington, D.C., NREL/PR-560-48066
*** NREL/TP-510-37779
Relevance
Facilitating DOE’s H₂ Cost Goal = $4/gge

Bio-oil reforming technology advancements being pursued in this work

1. Reduced Capital Costs of Plant
 - Minimizing unit operations (e.g., no furnace requirements)
 - Smaller PSA, smaller (or possible elimination of) WGS, no air separation
 - Process simplification minimizes BOP components

2. Increased Energy Conversion Efficiency
 - In situ CO₂ capture, push thermodynamics of reforming to higher conversion
 - In situ heat exchange between reaction & regeneration to minimizes heat loss
 - 80% energy conversion efficiency achievable (versus 71.4% for methane reforming, 2011 status)

3. Increased Durability
 - Reduced O&M (operations & maintenance) requirements
 - Directly addresses coking & catalyst deactivation
 - Modular, compact reactors to make unit turn-around easier
Approach – our process innovations
Reduce unit process steps and intensify heat/mass transfer

Typical commercial processes for centralized H₂ production

- Hydrocarbon (methane) + steam
- Air
- Fuel
- Flue gas
- High-T furnace
- Steam-reforming reactor
- Water-gas-shift reactor
- Pressure swing adsorption (PSA)
- CO₂ mix
- Pure H₂

Present process

- Bio-oil + steam
- Air
- Reduce unit process steps
- Integrated reforming/CO₂ sorption reactor
- PSA
- CO₂ mix
- Pure H₂
- Enriched H₂

Project focuses:

- Compact, high throughput, low-cost reactor
- Effective and stable catalyst and sorbent materials
- High system energy efficiency

Rapid swing reactor operation

- Address catalyst deactivation & sorbent saturation by periodic regeneration
- Make in-situ heat transfer
Approach – monolith reactor innovation for rapid (1-10 min) swing operation

Reforming conditions:
- $T < 600^\circ\text{C}$, $P < 24$ bar
- Endothermic steam-reforming reaction
- Coking & de-oxygenation reaction
- Exothermic carbonation reaction

Regeneration conditions:
- $T < 750^\circ\text{C}$, $P \sim 1$ bar
- Exothermic coke combustion
- Endothermic carbonate decomposition

Design features:
- Place catalyst/sorbent at the same spot to achieve rapid mass and heat transfer
- Have straight flow channels to minimize dead space and pressure drop
- Fix the sorbent and catalyst to avoid attrition and hydrodynamic erosion
Approach - materials innovation for integrated steam-reforming and CO₂ carbonation

Composite catalyst of synergistic functions
- Provide redox and acidic sites for concerted cracking and reforming and reactions
- Be activated by air calcination

\[
\begin{align*}
 H_2O & \rightarrow H_2, CO_2, R_i \\
 C_nH_mO_k & \rightarrow H_2 + R_2-CH_2-R_1 \rightarrow R_2-CH_3 + HR_1 \\
 H_2O + [-cat] & \rightarrow [O]-cat + H_2
\end{align*}
\]

CO₂ sorbent with tailored properties
- Work under the reforming conditions
- Provide adequate working capacity, rapid kinetics, and stability

\[
\begin{align*}
 HC + [O]-cat & \rightarrow CO_2 + H_2O + [-cat] \\
 H_2O + [-cat] & \rightarrow [O]-cat + H_2
\end{align*}
\]

- Reforming catalysts are designed based on team’s previous experiences and synergistic catalyst design model
- CO₂ sorbents are formulated based on previous CO₂ capture studies at PNNL

Approach - milestones addressing three critical challenges

Milestone 1 (FY15) – material innovations: development of optimum reforming catalysts and in-situ CO₂ sorbents under proposed operation conditions (*single-tube reactor tests at gram levels*)
- H₂ productivity (0.6 [kg-H₂/h]/kg of catalyst)
- CO₂ capture productivity >0.2 [kg-CO₂/h]/kg of sorbent

Milestone 2 (FY16) – monolithic reactor innovation: demonstration of in-situ CO₂ capture for pure H₂ production and catalyst/sorbent stability (*single-tube & integrated reactor tests in tens of g level*)
- >100 cycles of reforming/regeneration tests with production of >90% pure H₂ at GHSV >10,000 v/v/h
- Update techno-economic analysis

Milestone 3 (FY17) – process innovation: Demonstration of an integrated reactor system with technical readiness level ≥ 4 (*tests in hundreds of g level*)
- H₂ production capacity =2 kg/day, >90% H₂ in reactor, >99% H₂ after PSA
- ≥10 wt% H₂ yield
- A mobile testing skid for continuous swing reactor operation
Collaboration and technology transfer

Prof. Yong Wang
Washington State Univ.
- Fundamental understandings and discovery of new reforming catalysis
- Catalyst characterization and kinetics studies

Dr. Chris Bertole
Cormetech
- Development of monolith support of tailored properties

PNNL
- New technology innovations (material, reactor, process)
- Critical process or product concept studies

Dr. Bang Xu
Dason Technology
- Reactor system tests and process development

Scale-up, manufacture, and commercialization of monolith support & catalyst

Process design, engineering and field tests for process commercialization

Future

Future
Accomplishment & Progress

Versatile laboratory-bench system built for reaction/sorption tests

Single-tube reactor

- Different sizes of reactor tubes
- Particle-packed and monolith-inserted beds
- Rapid temperature or pressure swing
- Multi-cycle operation
- Tests of new materials and new process concepts

Schematic of test apparatus

Control system
Accomplishment & Progress

CO₂ sorbents prepared in-house and screened by TGA tests

<table>
<thead>
<tr>
<th>Material + promoters</th>
<th>Working capacity measured with multiple cycles of CO₂ sorption/air purge, wt% [sorption↔regeneration temperature]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>360°C↔450°C</td>
</tr>
<tr>
<td>MgO</td>
<td>60% 1ˢᵗ cycle <1% cycles 2+</td>
</tr>
<tr>
<td>MgO +Na₂CO₃</td>
<td>15% stable</td>
</tr>
<tr>
<td>CaO</td>
<td>Temperature too low for regeneration</td>
</tr>
<tr>
<td>Decomposed dolomite</td>
<td>5-8% stable</td>
</tr>
</tbody>
</table>

Promising sorbent materials and respective operating temperatures are identified in GREEN

- Promoted MgO-Na₂CO₃ and dolomite sorbents prepared for packed bed testing
- Packed bed tests are ongoing
- Design and preparation of new sorbents is ongoing
Accomplishment & Progress

Temperature variation due heat of CO₂ sorption in a particle-packed bed

- Pronounced temperature variations shown in such a small particle-packed bed (1/2” OD tube)!
- Efficient heat transfer is important
- The results affirm present approaches:
 - In situ coupling of endothermic reforming reaction with exothermic CO₂ capture
 - In situ coupling of exothermic coke combustion with endothermic CO₂ desorption

Degree of temperature rise-up decreased by reducing p_CO₂ from 1.0 to 0.2 bar
Presence of steam promotes working capacity of a MgO-based sorbent

- Rapid sorption/desorption kinetics is shown
- Sorbent can be regenerated by either PSA or TSA
- Presence of steam slightly stabilizes the sorbent performance, promising for usage under steam-reforming conditions

Adsorption conditions: 390°C, 1 bar, 20% CO₂, GHSV = 4,200 l/h

Regeneration conditions: 450°C, 1 bar, air

Break-through curves with dry gas

Break-through curves with 30% H₂O
A metal oxide nano-composite catalyst showed significant reforming activity at 400°C.

Deactivation by coking occurred rapidly and activity could not be restored by raising temperature.

Catalytic performances are drastically affected by bio-oil flow distribution.
Accomplishment & Progress

TiO$_2$ monolith support prepared and catalyzed for reforming reaction

Core-drilled 20mm x 120mm monolith (~300cpsi) for 1-inch reactor

- Monolith integrity and porous structures are maintained at high calcination temperature.

- Significant amounts of the catalyst can be loaded with uniform textures.

![Image of monolith](image1.png)

Approximately 1-mm channel

0.36mm wall thickness

![Image of TiO$_2$ monolith](image2.png)

TiO$_2$ monolith channel wall impregnated with reforming catalyst

Graph 1:

- BET surface area vs. Calcination temp, °C

Graph 2:

- BET surface area vs. Catalyst loading, wt%

- Pore volume vs. Catalyst loading, wt%
Accomplishment & Progress
Integrated testing system designed and being built

Process flow diagram finalized for integrated testing unit

![Process Flow Diagram](image)

Scale of Development

- **H₂ production, kg/day**
 - Year 1 – 0.51
 - Year 3 – 2.54
 - Commercial – 1525

- **Reactor dimension**
 - Year 1 – 1 in.
 - Year 3 – 2 in.
 - Commercial – ~40 in.

- **Reforming catalyst**
 - Year 1 – 20 grams
 - Year 3 – 40 grams
 - Commercial – 60 kg

- **CO₂ sorbent**
 - Year 1 – 162 grams
 - Year 3 – 808 grams
 - Commercial – 485 kg

Design specifications:

500°C [reforming] ↔ 600°C [regeneration]

- 10wt% CO₂ sorbent working capacity
- 10 [g/hr]/g-catalyst bio-oil SV
- 2:1 H₂O:bio-oil
- 80% single pass conversion
- 80%/20% carbon yield to reforming/coke
- 90% CO₂ capture

- **Capability to recycle un-converted bio-oil**

Progress:

- Designs of key equipment are completed
- Vendor quotes are acquired and procurement is ongoing
Remaining barriers and challenges, and proposed future work

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Challenges</th>
<th>Proposed approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-T, regenerative reforming catalyst</td>
<td>Bio-oil flow distribution</td>
<td>FY15: New designs of distributor and reactor bed package</td>
</tr>
<tr>
<td></td>
<td>Regeneration and stability, and activity enhancement</td>
<td>FY15: More catalyst designs and preparation, more reforming/regeneration tests</td>
</tr>
<tr>
<td>In-situ CO₂ sorbent</td>
<td>Matching of CO₂ sorption/regeneration conditions with steam-reforming</td>
<td>FY15: Tailoring CO₂ sorbent properties and more sorption process parametric tests</td>
</tr>
<tr>
<td>Monolith reactor integration</td>
<td>Material integration of reforming catalyst and CO₂ sorbent into TiO₂ monolith structures</td>
<td>FY16: Tailoring and understanding of monolith properties as a sorbent and catalyst support</td>
</tr>
<tr>
<td></td>
<td>Synchronization of reforming reaction and CO₂ capture processes in the monolith structure</td>
<td>FY16: Operation of the integrated reactor testing system and parametric process tests</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Material preparation & characterization</th>
<th>First group of TiO₂ monoliths prepared</th>
<th>Cormetech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A few groups of new reforming catalysts prepared and tested, including monolith-supported ones</td>
<td>WSU & PNNL</td>
</tr>
<tr>
<td></td>
<td>Review of recent literature on CO₂ sorbent and bio-oil reforming completed</td>
<td>PNNL</td>
</tr>
<tr>
<td></td>
<td>Two promising CO₂ sorbents identified by TGA tests for respective low-T and high-T sorption</td>
<td>PNNL</td>
</tr>
<tr>
<td>Adsorption & reaction tests</td>
<td>Single-tube reactor testing capabilities built</td>
<td>PNNL</td>
</tr>
<tr>
<td></td>
<td>Rapid kinetics and initial stability of the low-T CO₂ sorbent in presence of H₂O confirmed by packed bed tests</td>
<td>PNNL</td>
</tr>
<tr>
<td></td>
<td>Two promising low-T reforming catalysts identified by respective model compound and actual bio-oil reforming tests</td>
<td>WSU & PNNL</td>
</tr>
<tr>
<td>Process research and development</td>
<td>A provisional patent application was filed “An integrated reactor unit for H₂ production”</td>
<td>PNNL</td>
</tr>
<tr>
<td></td>
<td>Design of integrated test unit finalized and procurement of major components in progress</td>
<td>Dason Technology</td>
</tr>
</tbody>
</table>
Technical Back-Up slides (optional)
Exothermic coke combustion for catalyst regeneration:
\[C_{n-2k}(coke)-cat + 0.5(2.5n-k)O_2 \rightarrow 0.5(n-2k)H_2O + nCO_2 + \Delta H(<0) \]

Endothermic carbonate decomposition:
\[MCO_3 \rightarrow CO_2 + MO + \Delta H(>0) \]

Endothermic steam-reforming (SR) reaction:
\[C_nH_mO_k + (2n-k)H_2O \rightarrow (0.5m+2n-k)H_2 + nCO_2 \]

Coking & de-oxygenation reaction:
\[C_nH_mO_k + Cat \rightarrow C_nH_{n-2k}(coke)-cat + kH_2O \]

Exothermic carbonation reaction:
\[CO_2 + MO \rightarrow MCO_3 \]

Reforming conditions:
- T < 500°C
- P < 300 psi (24 bar)

Regeneration conditions:
- T < 600°C
- P ~ 1 bar

In situ coupling of endothermic steam reforming with exothermic carbonation

In situ coupling of exothermic coke combustion with endothermic carbonate decomposition

Thermal momentum transfer between reactors
Co2 sorbent materials reported in the literature:

<table>
<thead>
<tr>
<th>CO2 sorbents that may work under reforming conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CaO-based: MgO-CaO, TiO2-CaO, Li2CO3-CaO</td>
</tr>
<tr>
<td>• MgO-based: K2CO3-MgO, Cs2CO3-doped MgO, KNO3-MgO, alkaline and alkaline earth-promoted MgO</td>
</tr>
<tr>
<td>• Other compounds: Na2Mg(CO3)2, Li8SiO6 mixed with (K-, Na-carbonates), lithium silicate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH4 steam reforming with in-situ CO2 capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CeZrOx-CaO + Ni/hydrotalcite</td>
</tr>
<tr>
<td>• Mg1-xAlx(OH)2(CO3)x or Lithium zirconate +Rh/Ce,aZr1-aO2</td>
</tr>
<tr>
<td>• commercial K2CO3-promoted HTC from SASOL + Ni/alumina</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bio-oil steam reforming with in situ CO2 capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dolomite + Ni/La2O3-Al2O3</td>
</tr>
</tbody>
</table>

- CaO-based sorbents typically require regeneration above 700°C, and the sorbent tends to deactivate with cycle.
- A stable CO2 sorbent with fast kinetics has not been shown yet through sorption/regeneration cycles.
Accomplishment & Progress

Bio-oil reforming catalyst background studies and preparation

Literature review conducted to understand pros/cons of different catalysts studied, and to address critical needs in this project work

<table>
<thead>
<tr>
<th>Commercial catalyst</th>
<th>Z417, C11-NK and NREL#20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni on different support</td>
<td>Ni/alumina, Ni/La-alumina, Ni/CaAl$_2$O$_4$, Ni/CeO$_2$–ZrO$_2$; Ni/HZSM-5(Si/Al=25), Ni/CNFs catalyst</td>
</tr>
<tr>
<td>Ni (+ additive)</td>
<td>Ni (+ additive)/ Al$_2$O$_3$, NiCu/MgCe/Al mixed oxides</td>
</tr>
<tr>
<td>Previous metal</td>
<td>Ru/MgO/Al$_2$O$_3$, 1%Pt/Al$_2$O$_3$, Rh or Ir/CaAl$_2$O$_4$</td>
</tr>
<tr>
<td>Mixed metal oxide</td>
<td>Ni–Al modified with Mg and Ca 2CaO -7Al$_2$O$_3$ doped with Mg, K or Ce</td>
</tr>
</tbody>
</table>

- Most catalysts are studied at reaction temperatures > 500°C.
- Catalyst deactivation is common problem. Coke formation is the major cause, more pronounced in the Ni-based catalysts.
- No regeneration and stability of the catalysts have been reported.
Technical Accomplishments – Task 1
thermodynamic analysis of CO$_2$ sorbent design

- MgO is in the lower working temperature range for present application
- CaO is in the higher end
- Compounds are likely needed to shift the CO$_2$/MgO equilibrium toward higher temperature

![Diagram showing thermodynamic analysis of CO$_2$ sorbent design](image-url)
Technical Accomplishments – Task 1

MgO/Na$_2$CO$_3$ (in-house) and CaO sorbent performances

\[\text{MgO} + \text{CO}_2 + \text{Na}_2\text{CO}_3 \leftrightarrow \text{Na}_2\text{Mg(CO}_3)_2 \]

- A stable sorbent at 400/500ºC working/regeneration temp.

\[\text{CaO} + \text{CO}_2 \leftrightarrow \text{CaCO}_3 \]

500ºC ↔ 600-750ºC

- >700ºC regen required
- Addition of carbonates
 - decreased working capacity
 - did *not* lower regeneration temperature
Technical Accomplishments – Task 1

Performances of dolomite-derived CO$_2$ sorbent at high T

Dolomite-derived sorbent
MgO + CaO + 2CO$_2$ \leftrightarrow MgCa(CO$_3$)$_2$

- Only CaO component works at high temperature!

Dolomite-derived sorbent with addition of promoter
- did not lower regeneration temperature
- *Increased* working capacity
Technical Accomplishments – Task 1
Performances of dolomite-derived CO$_2$ sorbent at low T

Dolomite-derived sorbent with promoter at lower temperatures

$$
\text{MgO} + \text{CaO} + 2\text{CO}_2 \leftrightarrow \text{MgCa(CO}_3\text{)}_2
$$

- Only MgO component works at low temperatures!
Accomplishment & Progress

Promising reforming catalysts identified from model reaction tests

- Identified catalyst composition which gives about 70% yield to H₂ using phenol as a model compound for pyrolysis oil
- Catalysts are stable for >30 mins and no activation is required.

Reaction Conditions:
\[T = 500 \, ^\circ\text{C}, \, S/C=10, \, P_{\text{PhOH}} = 0.81 \, \text{mol\%}, \, SV= 3000 \, \text{hr}^{-1} \]