

Flowing Particle Bed Solarthermal Redox Process to Split Water

PI: Alan W. Weimer

Barbara J. Ward, Brian D. Ehrhart, Ibraheam Al-Shankiti, <u>Christopher L. Muhich</u>, Samantha L. Miller, Amanda L.Hoskins, Arto Groehn, Charles B. Musgrave University of Colorado at Boulder

6/11/2015

Project ID: PD114

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

Project Start Date: 9/1/2014 Project End Date: 8/31/2017 % Complete: 15%

Technical Barriers Addressed

S. High-temperature robust materialsW. Materials and catalysts developmentX. Chemical reactor development and capital costs

Budget

Total project funding: \$2,000,000 Sub-contract to NREL: \$450,000 Total recipient cost share: \$6,250 Total DOE funds spent*: \$109,203 *as of 3/31/2015

TRL 2 \rightarrow TRL 3

Partners/Collaborators

National Renewable Energy Laboratory (NREL), Golden, CO

• Solar testing facility and capabilities

Musgrave Group*, CU Boulder

 Active materials discovery and DFT modeling (*NSF/DOE Funding – joint FOA)

Alan Lewandowski, Consultant

• Solar field design

Relevance: Renewable Efficient Hydrogen Generation

Project Objective: Design and test individual components of a novel flowing particle solarthermal water splitting system capable of producing 50,000 kg H_2 /day at a cost < \$2/kg H_2

- Identify and develop high-performance active material formulations
- Synthesize flowable, attrition-resistant, long-use spherical particles from low-cost precursors
- Demonstrate high-temperature tolerant, refractory, non-reactive containment materials
- Construct flowing particle redox test system and test components of system
- Monitor progress toward cost target by incorporating experimental results into frequently updated detailed process model and H2A
- On-sun production for a full solar day
- Move from TRL 2 to TRL 3

This Reporting Period:

- ✓ Demonstrated production of spherical spray dried active materials (Barrier W)
- ✓ Started construction of flowing particle redox test system (Barrier X)
- $\checkmark~$ Developed model to understand process efficiency and sensitivity of parameters
- ✓ Developed improved understanding of hercynite cycle chemistry (Barrier W)

Approach:

Iterative Materials and Reactor Development

and redox materials.

- M2.1: Synthesis and characterization of coated SiC powders. FY16Q4 (10% done)
- M2.2: Selection of preferred coating material based on TGA runs. FY16Q4 (0% done)
- M2.4: Coated containment tube system constructed. FY16Q1 (5% done)
- GNG4: Coated SiC with ≥25% reduction in steam reactivity. FY16Q4 (0% done)

reactive engineered particles

(FY17)

Accomplishments and Progress: Updated Reactor Design

Updated Receiver Design

Vacuum:

Inert Sweep:

Multiple reactor units on top of central receiver

Accomplishments and Progress: H2A AspenPlus[®] Process Model

AspenPlus process model updated to incorporate experimental results

- Updated reaction enthalpies from DFT calculations
- Updated temperature-dependent material activities from SFR experimental results

Model expanded to incorporate more operation conditions

- Added excess steam flow to facilitate thermodynamically favorable oxidation conditions
- Added capacity to operate at nearisothermal conditions (with solids heat exchange)
- Added staged vacuum
- Added work for solids fluidization
 Added blocks for simple sensitivity analysis of heat exchanger effectiveness

AspenPlus Process Flow Diagram

Accomplishments and Progress: H2A Techno-Economic Analysis

Updated H2A with new solar field model

- Three solar fields direct to one central tower with three secondary concentrators
- Ideal setup for 160 MW plant is 4000x concentration with one 249 m central tower

More detailed capital costs of high temperature reactor components

Used updated system design and CapCost software to estimate unit cost of SiC reactors

Updated H2A predicts system will achieve $\frac{2}{kg} H_2$ ultimate cost goal

Heat exchanger effectiveness, high-temperature SiC reactor materials costs, and active material replacement frequency and activity are major cost drivers that this project seeks to impact ⁷

Accomplishments and Progress: Low Vacuum Pump Efficiency

Simple vacuum reduction leads to low efficiency

- Vacuum pumps are inherently less efficient than atmospheric or positive-pressure pumps
- Low pressure useful for chemical thermodynamics, but leads to low efficiency

T _{RED} = 1800 K	Calculations based on
р _{гед} = 1 Ра	ceria active material

B. Bulfin, et al., Energy & Fuels, 29, pp.1001-1009, 2015 η_{PUMP} = 10% $\eta_{PUMP} = 0.08\%$ 0.35 0.35 =0=0.25 0.3 0.3 =0.25 =0.5 =0.90.25 0.25 =0.9GG =1 ϵ_{GG} 0.2 0.2 $\eta_{\rm STH}$ η_{sтн} 0.15 0.15 $\eta_{STH} \approx 10^{-4}$ 0.1 0.1 0.05 0.05 200 300 0 100 200 300 400 500 600 700 0 100 400 500 600 700 800 800 8 $\Delta T [K]$ $\Delta T [K]$

Accomplishments and Progress: Inert Gas Reduction Shows Promise

Inert sweep gas enables higher efficiency

- Estimating energy required to separate O₂/inert
- Increased extent of reduction reduces steam required for oxidation
- Can also increase reduction reaction rate (not considered here)

Accomplishments and Progress: Understanding materials and predicting properties

NSF "Sister" Project Materials Genome Initiative based STWS Materials Development

We apply fundamental materials science, chemistry and physics to discover promising materials using an **integrated computational, theory and experimental approach**. Computation will using state-ofthe-art electronic structure theory, which

will allow us to develop design rules for new materials and develop **digital data base** for material screening. **Integration with experiments** and **cross team work with the DOE project and SABIC** will then validate and help refine materials assessment metrics. This enables computational prototyping of materials integrating theory and experimentation using both thermodynamic and kinetic filters.

As of 4/10/2015

- Calculated predicted E_{O-vac} for 1045 possible binary perovskites using method developed in our group by Deml *et al.*
- 570 materials spontaneously phase transitioned out of the perovskite structure
- 237 materials have reduction enthalpies too low to drive STWS (E_{O-vac} < 280 kJ/mol)
- 199 materials are potentially capable of driving STWS^{*} (280 kJ/mol <E_{O-vac} < 600 kJ/mol)
- 39 materials have reduction enthalpies too high for practical use as STWS materials (E_{O-vac} > 600 kJ/mol)

* Materials were not analyzed for thermal stability or fabrication practicality

Accomplishments and Progress: Engineered Particles – Preliminary Characterization

>2g Hercynite active material synthesized by spray drying and characterized for composition, particle size, and surface area

Spray dried hercynite spherical particles after calcining at 850°C for 8 hours

XRD analysis after calcining shows **hercynite** and iron oxide (hematite) peaks, and ICP results show **elemental content in agreement with intended stoichiometric ratios**

Chemical composition from ICP: $Co_{0.4}Fe_{0.66}AI_{2.1}$

Spray drying can produce engineering particles that are active, robust, flow-able, and cost effective

- $C = \frac{8sryf}{n}$
- C: annual replacement costs s: flow rate r: cost per particle y: operational days per year

f: fraction of original cost n: number of cycles before replacement

L.-S. Fan, Chemical Looping systems for Fossil Energy Conversions. AIChE and John Wiley & Sons, Inc., 2010.

Preliminary spray drying has produced particles with a narrow size distribution

Accomplishments and Progress: Progress of Particle Flow Reactor System

Particle Flow Reactor Lab System

- Test reduction and oxidation zones with spray dried particles
- Reduce particles as they are flowing down an alumina tube under vacuum
- Oxidize particles in a fluidized bed with steam
- Perform comparison studies of inert gas sweeping versus vacuum pumping.

Current Status

- Furnaces, vacuum pump delivered and being installed
- ✓ Mass flow controllers, valves ordered
- Data acquisition and control system in progress

System to test reduction and oxidation on track to meet Go/No-Go decision at end of Budget Period 1

13

Progress and Accomplishments: SiC Coating and SFR Upgrades

SiC Coating

Synthesis :

- Determine the ALD deposition rate of alumina and silica
- Coat mullite (3Al₂O₃ 2SiO₂) using the determined deposition rates to ensure that correct ratio is deposited
- Analyze with XRD
- Analysis of coating efficacy:
 - TGA will be used to expose ALD-coated SiC particles to flowing steam
 - Can determine if the SiC is degrading and by what rate

Current Status

- Material-specific components of ALD reactor have been ordered
- Precursors are ready for testing

Coating of SiC particles ready to begin

SFR Improvements for Long-Term Testing

- New steam generation system ordered and delivered
- Preliminary system design for long-term redox cycling has been completed
- Valves and other components have been ordered

New MKS Cirrus[™] 2 mass spectrometers installed on SFR systems for improved data quality

Key Features of New Mass Spec

- Wide dynamic range with rapid screening speeds (up to 250 pts/s)
- Improved detection limits for gases of interest (<100ppb)
- Heated capillary inlet for more rapid signal response
- Direct Ethernet interface with software for fully automated operation and calibration

✓ System upgrades will allow for in-house long term materials testing

 \checkmark Upgrades are on-track to meet milestones in FY16

Collaborations

Fund-Receiving Collaborator		Project Roles
NATIONAL RENEWABLE ENERGY LABORATORY	National Renewable Energy Laboratory (NREL) (sub)	High Flux Solar Furnace (HFSF) user facility for process demonstration
	Musgrave Group, CU Boulder	Active materials discovery and DFT modeling through "sister" NSF project*

* Funds from Joint DOE/NSF FOA

Leveraged Collaborators (no funds received from DOE)		Project Roles	
Australian National University	Australian National University (ANU)	Reactor models and receiver testing at solar simulator facility	
بیابک عادا <i>ف</i>	Saudi Basic Industries Corporation (SABIC)	Materials characterization support; supplying equipment	

Accomplishments and Progress: Responses to Previous Year Reviewer' Comments

This project was not reviewed last year

Remaining Challenges and Barriers: Active and Containment Materials

G

- Reactive Materials
 - Higher productivity needed for higher efficiency and lower cost
 - Particles must be able to flow and be entrained by steam
 - Long particle lifetimes difficult, especially at high temperature
- Reactor Design
 - Reduction may need longer residence time
 - Heat recuperation within reactor is useful but difficult
- Containment Materials Development
 - Reactor containment materials needed for high temperature reactions
 - Steam-steam heat recuperation materials needed for high temperatures
- Efficient H₂ production
 - More realistic costs difficult to predict for future case
 - More specific system heat integration may mean that some heat is discarded

Project Objective: Design and test individual components of a novel flowing particle solarthermal water splitting system capable of producing 50,000 kg H_2 /day at a cost < \$2/kg H_2

Proposed Future Work

- Reactive Materials
 - Perform detailed thermodynamic and kinetic studies of active materials (M1.3 & M1.6)
 - Validate computation work of sister NSF project (M1.1 & M1.2)
 - Demonstrate at least 150 µmol/g of spray dried active materials (GNG1)
 - Determine long term stability of spray dried particles (M1.7)
- Reactor Design
 - Construct electrically heated particle flow redox test system (M3.1)
 - Demonstrate redox cycle of at least 1 gram of spray dried active materials (GNG4)
 - Develop a solar heliostat field model to provide a flux profile over the internal surfaces of the receiver-reactor (M3.5)
- Containment Materials Development
 - Perform mullite/alumina/... ALD coatings on SiC particles (M2.1)
 - Perform TGA reactivity studies on uncoated and coated SiC particles with steam (M2.2)
- Efficient H₂ production
 - Update AspenPlus model and H2A with experimental thermodynamic and kinetic results and optimal operating conditions (M5.1 & M5.2)

- Methods and Apparatus for Gas Phase Reduction/Oxidation Processes; 13/857,951; being prosecuted
- Technology licensing opportunities pursued

Summary

- Approach
 - Synergistic approach to active material, reactor design, and containment material efforts
- Reactive Materials
 - Computations results can predict H₂ production capacity
 - Experimental validation of computational results
 - Preliminary spray dried particles are spherical and form material composition of interest
 - Reactor test systems upgrades will improve data collection and enable long-term testing
- Reactor Design
 - Reactor concept updated with more realistic receiver concept
 - Flowing particle test system being built, on-track for Milestone completion
- Containment Materials Development
 - Preliminary deposition has begun
 - Preliminary system design complete
- Efficient H₂ production
 - Efficiency calculations suggest inert gas sweep reduction can be useful
 - AspenPlus simulation updated with more detailed operations and realistic assumptions
 - H2A capital costs improved, sensitivity studies underway

Acknowledgements

Technical Backup Slides

Summary of Solar Plant Design Characteristics and Assumptions

Parameter	2015	2020	Ultimate
Heliostat area (m ²)	2,242,760	806,980	430,840
Secondary Concentrator area (m ²)	120	120	120
Number of towers	6	2	1
Tower height (m)	231	240	248
Secondary concentration	4000x	4000x	4000x
Max temperature (°C)	1500	1500	1500
Annual net thermal energy required (GWhr)	2427	873	467

Capital Cost Assumptions:

Heliostat costs: Secondary concentrator costs: Tower cost: $75/m^{2}$ for cases 2020 and later, $140/m^{2}$ in 2015. $1500/m^{2}$ $1.5 * [600,000 + 17.72 * Tower height (m)^{2.392}]$

Summary of Chemical Plant Design Characteristics and Assumptions

Parameter	2015	2020	Ultimate
Gas-steam heat exchanger effectiveness	85%	90%	95%
Solid-solid heat exchanger effectiveness	85%	85%	85%
Reduction temperature (°C)	1500	1500	1500
Oxidation temperature (°C)	1000	1250	1350
Number of reactor units	18	6	3
Material factor for SiC	6	5	3
Cycle time (min)	20	9	5
Material activity (µmol H_2/g)	354 (current material measured value)	389 (10% greater than current material)	425 (20% greater than current material)
Material heat of reaction (kJ/mol)	384 (current result of DFT model for hercynite)	346 (10% lower than current result)	307 (20% lower than current result)
Amount of reactive material cycled (kg)	2,900,000	1,200,000	610,000
Materials replacement frequency (years)	2	5	5
Process water usage (gallons/kg H ₂)	2.4	2.4	2.4
Byproduct O2 produced (kg/ kg H2)	7.9	7.9	7.9
Industrial electricity usage (kWh/kg H ₂)	9.1	4.9	3.9
Annual net thermal energy required (GWhr)	2427	873	467

Solar Field Sizing Model

Adopted new solar field sizing program developed by CPC consultant Alan Lewandowski

Modeling Assumptions:

- Three solar fields direct to one central tower with three secondary concentrators
 - CPC sized for ~95% intercept at design point
 - Day 82, hour 10, Latitude 30°N
- Tower height/heliostat dimension = 20
 - Sufficiently small heliostat to have no additional impact on optical performance at high incident angles
- Annual performance determined by daily modeling on single day per month for each of 12 months
- Current setup for 160 MW plant is 4000x concentration with one 248 m central tower

Concept cartoon of new three-lobed solar field design with three central towers

Solar field sizing model outputs:

Heliostat area

Solar field area

Capital Cost Estimates

Chemical Plant Capital Costs *Determined primarily by:*

• Number of towers

- Amount of active material
- Price of SiC reactors

- CapCost Software used to estimate bare module cost of reactors made from carbon steel, reactors adjusted with material factor for SiC
- Other chemical plant equipment estimated from costs of other projects and scaled for 50,000 kg/day plant

Solar Plant Capital Costs

Determined primarily by:

- Heliostat area
- Price of heliostats
- Number of towers

Direct Capital Cost Breakdown for \$2/kg price point

Inert Gas Sweep Flow Requirements

Impact of Inert Gas Flow Above Minimum

28

