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Overview

Timeline

- Project start date: 1/10/2014
- Project end date: 9/30/2017 *

* Project continuation and direction determined

annually by DoE (Go/NoGo)

Budget

- Total budget funding: $3,000,000

- DoE share: 100%

- Contractor share: 0%
- Total DoE funds spent as of 03/2015
(including Nat. Labs): $250k

Barriers

Challenges for photoelectrochemical hydrogen
production technology:

— Materials Efficiency (AE)

— Materials Durability (AF)

— Integrated device configuration (AG)
— Synthesis and Manufacturing (AJ)

Partners / primary role

- HNEI (N. Gaillard)
—> Absorber / p-n junction fabrication

- Stanford (T. Jaramillo)
-> Surface catalysis and corrosion protection

- UNLV (C. Heske)
= Bulk/sub-surface/surface characterization

- LLNL (T. Ogitsu)
- Absorber/interface theoretical modeling

- NREL (H. Wang, T. Deutsch)
—> Device validation and PEC reactor design



Relevance - Objectives

- Long-term goal: identify efficient and durable copper chalcopyrite-based materials which can operate
under moderate solar concentration and capable of generating hydrogen via PEC water splitting at a cost
of S2/kg or less.

- This project: (1) develop new wide bandgap (>1.7 eV) copper chalcopyrites compatible with the hybrid
photoelectrode (HPE) design, (2) demonstrate at least 15% STH efficiency and (3) generate 3L of H, under
10x concentration (“Type 4” PEC reactor) in 8 hours.

Table 3.1.8 Technical Targets: Photoelectrochemical Hydrogen Production:

Photoelectrode System with Solar Concentration °

Characteristics Units 2011 2013 2020 T

Status Target Target Target
Photoelectrochemical Hydrogen Cost b $/kg NA 17.30 5.70 2.10
Capital cost of Concentrator & PEC Receiver $/m2 NA 200 124 63
(non-installed, no electrode)

$/
d

Annual Electrode Cost per TPD H» yr-TPDH; NA 2.0M 255k 14k
Solar to Hydrogen (STH) Energy Conversion o 4 to 12% 15 20 o5
Ratio ® ° °
1-Sun Hydrogen Production Rate ks per|  33e7 1.2E-6 16E6 | 20E-6




STH efficiency upper limit vs. absorber bandgap Photocurrent densities of 1.3 eV CulnGaSe, solar cell vs. PEC photocathode
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Only PV-grade material classes can meet DoE targets Bandgap-tunable Cu-chalcopyrites make excellent candidates for PEC H, production

Standalone chalcopyrite-based PEC devices

1.65eV CuGaSe,-based standalone PEC device (HNEI/MVSystems)
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Take home message: Bandgaps of “conventional” copper chalcopyrites (CulnGaSe,) are too narrow for efficient PEC
H, production. New chalcopyrites with wider bandgaps are needed to relocate PV driver(s) under the photocathode




Approach — Integrating experiment, computation and theory

Advanced Materials Manufacturing (AMM) / Materials Genome initiative (MGI)

Innovative materials discovery and development for faster product development. Key
elements include:

* Integrating experiment, computation, and theory
* Making digital data accessible
Materials Innovation * Creating a world-class materials workforce

' * Leading a culture shift in materials research

Modeling

Accelerating materials development using [ euinz-Gas,———— 0
integrated modeling, synthesis and advanced 3 20 , zq
characterizations: & [T

Rl G i
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2. Theory-guided synthesis of wide bandgap ; \ UND
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deposition tools, i g £ LiNREL |
3. Advanced surface and interface spectroscopy Leev 206V 22¢V 24 2]
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Approach — Project tasks addressing barriers

Key steps in PEC H, production

@® Photo-current generation (solid-state),
@ Charge separation (solid-state),
® Catalysis/durability (electrochemistry).

Task 1. PV-grade wide bandgap Cu(In,Ga)S, absorbers: AE and Al barriers
Goal: identify, develop and test new wide bandgap material systems, supported by advanced
characterization by theoretical modeling.

Task 2. Sub-surface energetics improvement (p/n junction): AE and AG barriers
Goal: identify, develop and test new “n-type buffers” compatible with wide Eg chalcopyrites, supported by
advanced characterization by theoretical modeling.

Task 3. Surface catalysis and corrosion resistance: AE and AF barriers
Goal: evaluate Earth Abundant MoS, as both HER catalyst and protecting layer.

Task 4. Device certification and efficiency benchmarking: AG barrier

Goal: identify optical/electrical losses in complete HPE device made of HNEI’s CIGS and partners’ CIGSe,
validate STH efficiency and quantify the volume of H, generated under 10x concentration in 8 hours.

Barriers list : AE: Materials Efficiency, AF: Materials Durability, AG: Integrated device configuration, AJ: Synthesis/Manufacturing.



Approach — Milestones

Task# FY15 Milestones Due Date Status
1 Synthesize a CulnGas, thin film material with controlled stoichiometry & microstructure 12/2014 100%
2 Fabricate Cu(In,Ga)S, cells with Voc> 600 mV 03/2015 100%
3 Durability > 500 hrs at 8 mA/cm? with a chalcorpyrite photoelectrode 06/2015
4 Chalcopyrite photoelectrode with bandgap > 1.7eV that generates at least 10-12 mA/cm?2 09/2015

Go/No-Go decision criteria: Demonstrate a chalcopyrite photoelectrode material with bandgap > 1.7eV that generates a

photocurrent density of at least 10-12 mA/cm2

Task# FY16 Milestones
1 Cu(In,Ga)s, solar cells with a photoconversion efficiency > 6% 12/2015
4 Photocurrent density relevant to 15-16% STH with chalcorpyrite 12-13 mA/cm? 03/2016
3 Durability > 750 hrs at 8 mA/cm?, with a stretch goal of 1,000 hrs 06/2016
2 Fabricate Cu(In,Ga)S, cells with Voc> 750 mV 09/2016

Go/No-Go decision criteria: Demonstrate a wide bandgap chalcopyrite-based heterojunction with an open circuit potential of at
least 750 mV

Task# FY17 Milestones
1 Photocurrent density relevant to 16-17% STH with a chalcopyrite 13-14 mA/cm2 12/2016
2 Fabricate Cu(In,Ga)S, cells with Voc> 900 mV 03/2017
3 Durability > 1,000 hrs at 8 mA/cm?, with a stretch goal of 2,000 hrs 06/2017
4 HPE PEC device with a standalone STH of >15% generting at least 3L of H2 in 8 hrs. 09/2017




Accomplishments — Task 1: PV-grade absorbers

AE / Al barriers

1. Identifying chalcopyrite material candidates with 1.8 eV <Eg < 2.0 eV

Proposed PEC device
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Proposed method: post dep. annealing
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- PEC device: all-chalcopyrite dual
absorber HPE,
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Proposed method: direct co-evaporation

—> 3 alloys with great potential for PEC applications identified : Culn, ,Ga, ¢S, (today’s presentation),

CuGaSe S, ; & Culng,Al, ¢Se,.



Accomplishments — Task 1: PV-grade absorbers

2. Proof of concept demonstration: sulfurization of Cu(In,Ga)Se,
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—> Successful fabrication of photoactive CulnGaS, with controlled composition and tunable bandgap (1.5 — 2.4eV).



Accomplishments — Task 1: PV-grade absorbers AE / Al barriers

3. Accelerating PV-grade Cu(In,Ga)S, material development

Stepl: Synthesis and characterization Step 2: Solid-state properties mapping Step 3: PEC characterization
alGal/lin] e-  X-ray H* H,
> HER
o -V
NS catalyst
TCO
S e
% I AMLS, / pH2 blﬁ‘fi’r\r\'
Mdionology < "] Photoactivity g 251 UU /
é) ] é 50 H
P ) ‘ =
1 pn 2 ’ g Vonset 900 1‘n\/RHE
" g 2 g 75} .
' “d 5 Voc,avg=710 mV ae]
.. A s _Z = 100 )
. . E = g y Overpotentials
’ ( ’ P £ 0f 5-12.5 \ and kinetics
Y 3a i <O OX ST R © = ; ; ; 150 . . . .
02 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
Voltage (V) Potential (V vs. RHE)
~—~ 80
Culn, 4Gap 1S, <l Reco, 1.55¢V CIGS /Ru
- Sl T on g
< Microstruct gw & Fe
icrostructure b
‘E ; 40 Lﬁ 0 H'/H
g 2 30} ~
: : .
- S 20 1.55eV 8 E
I I e 10 Bandgap %o 1r v H OO
T T T o 2 2
200 250 300 :?150 400 (1)300 400 500 600 700 800 900 1000 = .
Raman shift (cm’) Wavelength (nm) ,L Surface energetics

Take home messages:

- Three chalcopyrite (CIGS, CGSSe, CIASe) alloys identified with optimum bandgap energy for PEC applications,
- New synthesis/testing (solid-state & PEC) strategy developed to accelerate materials discovery,

- 1.55 eV PV-grade CIGS with great potential for PEC H, production successfully developed with this approach.




Accomplishments — Task 2: Sub-surface energetics

1. Effect of n-type “buffers” on chalcopyrites PEC properties

a. CdS (20 nm)/annealing (150°C in air)/Ru n.p. (PVD)
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b. CdS (20 nm)/annealing (150°C in air)/etch in HCI/Ru n.p. (PVD)
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—> Crucial role of both surface Cd doping (homojunction) and CdS layer (heterojunction) demonstrated for CuGaSe,

11



Accomplishments — Task 2: Sub-surface energetics | ae/ac barriers

2. Identifying new buffers with optimum properties for wide E; chalcopyrites (CBO = 0 eV)
a. Advanced surface and interface characterization

Narrow Eg Culn(S,Se),/CdS Wide Eg Cu(In,Ga)s,/CdS
(previous study, not this program) (previous study, not this program)
/ Se), i Se),
Cun(s.Se), suface e nE oSk ok CISIOUN(S.Se) CulnGa)s, CdS/Cu(In,Ga)s,
surface e surface
CBO =0.0 (+0.15) eV ‘9—
CBM .- . CBM _ ‘
¥ 7 086 (x0.1) eV cBO=048(0.15)ev T 7 0.46 (20. E)F eV
1.4 (40.15) 6V ’ 1.76 (+0.15) eV
! 2.4 (+0.15) eV
VBM - 247 (£0.15) eV
VBO = -1.06 (£0.15) eV
S\ Y _VBM
VBO = 1.0 (+0.15) eV " B D) 147
EuPVSEC17 (2001), p.1261 APL 86, 062108 (2005)

b. Theoretical modeling

Narrow E; ClSe (1.0eV) Intermediate E; CGSe (1.6eV) Wide E; CGS (2.4eV)

CBO = +0.1eV CBO =-0.46
eV

CBO=-0.84
eV

Energy (eV)
Energy {eV)
Energy (eV)

Take home messages:
- Cadmium sulfide surface energetics are not optimum for wide bandgap chalcopyrites,
- New buffers must be identified, synthesized, characterized and tested.
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Accomplishments — Task 3: Surface catalysis/corrosion resistance

1. Assessing the origin of chalcopyrite photocorrosion

a. Standard PEC tests in laboratory
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b. Advanced surface/interface characterization
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Accomplishments — Task 3: Surface catalysis/corrosion resistance | At/ AF barriers

2. Surface Protection of CGSe with molybdenum disulphide — synthesis and characterization

a. Synthesize MoS, on CdS/CGSe
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2 nm MoS, shells have protected MoO; nanowires for 10,000 CVs

b. Activity and stability of MoS,/CdS/CGSe in 0.5M H,SO,
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Take home messages:

- Suite of advanced characterization methods develop to understand corrosion mechanisms and test surface protection strategies,
- Formation of unstable Ga,0; at chalcopyrite surface identify as a possible cause of photocorrosion,
- MoS, HER catalyst can effectively protect materials from degradation: MoO;, Si, CdS...etc.
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Accomplishments — Task 4: Device certification & efficiency benchmarking | AG barriers

1. Simulation of the complete HPE system to identify solid-state requirements

Requirement for 15% STH (this program’s goal): Requirement for 25% STH (DoE’s ultimate target):
- Bottom cell: 1.5eV, V.= 879 mV (HBZ’s CIS, cell) - Bottom cell: 1.1eV, V=740 mV (ZSW'’s CIGSe cell)
- Top cell: 2.0eV, V,=1.0 V, J, =12-13 mA.cm™ - Top cell: 1.74eV, V, = 1.0 V, ) =20-22 mA.cm™
HER catalyst N
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= £ , g
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Vioc=V.. +V 0 1 ! / L 1 0 1 \ 1 f 1 1
HPE™ Ttop © Tbottom 0.0 04 0.8 12 1.6 2.0 0.0 0.4 08 12 16 2.0
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* SOLARMAT 95, 864 (2011) / 879mV, 20 mA/cm2, FF: 70%, eff: 12.6% * Prog. Photovolt: Res. Appl. (2011) / 740mV, 35 mA/cm2, FF: 77%, eff: 20.3%

2. Outdoor testing using “Type 4” PEC reactor (10x concentrator + solar tracking)

—> Validate PEC reactor components (optics + encapsulation) and report STH efficiency of champion HPE devices

HPE and CE side-by-side HPE and transparent CE face-to-face
6” diam. Fresnel lens 0 i i T T 0 T T T ;
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g 1 L = 0.125M (52mS/cm) ] g 1 L = 0.125M (52mS/cm)
0. vented < e 62mM (26mS/cm) < e 62mM (26mS/cm)
2
é 2 g’ 2
2 2
< 3} 1 < 3t
- -
= =]
5 o
5 © 5 4
PEC reactor ST 1 ST
. . ! . \ . ) )
-1.2 -0.8 -0.4 0.0 0.4 0.8 12 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
Bias (V) Bias (V)

- Alternative PEC reactor designs can reduce the need for highly concentrated acidic electrolytes
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Collaborations

- US DoE PEC working group: white papers (metal oxides and chalcopyrites) and standardized test protocols,

- International Energy Agency/HIA/Annex 26: collaboration with international institutes and universities including
the Institute for Solar fuels (HZB), Delft University, University of Warsaw (Poland)...etc,

- University of Louisville (M. Sunkara) / Jozef Stefan Institute-Slovenia (M. Mozetic): U.S./European project on
physical vapor deposition of nanostructured PEC materials.

Project-specific collaborations:

- EMPA (A. Braun): in-situ characterization of phase transformation during CIGS synthesis (TASK 1),

- Columbia (D. Esposito): spatially resolved UV-vis analysis on composition graded chalcopyrites (TASK 1),

- University of Los Andes-Colombia (S. Barney): reactive sputtering of ZnOS buffers (TASK 2),

- AIST-Japan: provide narrow bandgap CIGSe PV drivers (supported by METI-DoE clean energy plan) (TASK 4),

- University of Bordeaux-France (A. Rougier): development of temperature-resistant TCOs as intermediate layers
for multi-junction CIGSSe solar cells and PEC devices (TASK 4),

- UC-Irvine (S. Ardo): Faradaic efficiency measurement on wide bandgap CIGS systems (TASK 4).

16



Remaining challenges & barriers / Proposed future work

Task 1. PV-grade wide bandgap Cu(In,Ga)S, absorbers

Challenges/Barriers: controlling elemental composition profile in PV-grade 1.8-2.0eV CIGS.

Proposed Future Work: evaluate the impact of sulfurization annealing process (RTP vs. slow ramp, sulfur pressure) on gallium and indium
profile, supported by theory and advanced characterization teams.

Task 2. Sub-surface energetics improvement (p/n junction)

Challenges/Barriers: free electron losses (Eg-Voc) appear to be greater with sulfide than selenides.

Proposed Future Work: with input from the theory team, we will evaluate post deposition treatments (naF, KF) to passivate surface
defects and develop alternative buffer layers. CIGS/buffer interface will be characterized at UNLV.

Task 3. Surface catalysis and corrosion resistance
Challenges/Barriers: coating a pin-hole free 5nm-thick MoS, layer on a rough polycrystalline CIGSSe film is challenging.

Proposed Future Work: we will replace our current MoS, deposition process (Mo evaporation followed by H,S sulfurization) with highly
conformal deposition techniques, including MOCVD and ALD, and measure durability of our MoS,-coated PEC materials.

Task 4. Device certification and efficiency benchmarking
Challenges/Barriers: achieving STH efficiency > 15% requires minimal electrical, kinetic and optical losses throughout the device.

Proposed Future Work: we will perform a complete loss analysis of our proposed HPE device, identify weaknesses and explore path for
optimization.
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Project summary

Relevance

Approach

Accomplishments

Collaborations

Proposed future
work

Create the first all-chalcopyrite HPE device with low-cost, PV-grade and durable thin film
materials to meet DoE’s efficiency and durability targets.

Focus on the development of wide bandgap chalcopyrite PEC materials, identify compatible
buffers to improve energetics (p-n junction), evaluate Earth-abundant MoS, as both HER and
protection layer and assess the STH efficiency of the complete HPE device.

(1) Identified 3 chalcopyrite material systems with optimum optical properties for PEC H,
production, (2) successfully fabricated PV-grade 1.55eV CIGS absorbers generating 13 mA/cm?
(in both PV & PEC integration), (3) demonstrated the crucial role of the CdS buffer on HER turn
on voltage and identified alternative buffer materials for wide E chalcopyrites, (4) developed
new in-situ advanced characterization methods to elucidate photocorrosion and tested MoS, as
a protective layer and (5) established solid-state requirements for both bottom and top cells in
order to meet DoE’s short (15%) and long (25%) term goals.

Project-specific collaboration with U.S. and international teams to address barriers in each of
the 4 technical tasks.

(1) Continue development of PV-grade and demonstrate at least 10-12 mA/cm2 with 1.8eV CIGS
(FY15 Go/NoGo), (2) fabricate, characterize and test ZnOS as an alternative buffer and
demonstrate Voc > 750 mV (FY16 Go/NoGo), (3) continue development of conformal MoS,
coating using ALD or MOCVD processes to meet 500 (FY15), 750 (FY16) and 1,000 (FY17) hour

durability targets and (4) validate the 1.5eV/2.0eV HPE structure and measure its STH efficiency.
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HNEI — University of Los Andes collaboration on ZnOS buffers

Non-toxic n-type buffer: ZnOS

- Reactive sputtering using ZnS target
—> Optical absorption controlled with O, pp
- 2.7 eV ZnO0S transmits more light than CdS: @ Jsc

- Buffer (ZnOS) & HER catalyst (Ru) deposited back to back
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CIGSe (1.1 eV) PV integration schemes
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- Successful synthesis of bandgap tunable ZnOS n-type buffers

1200
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HNEI — University of Bordeaux collaboration on temperature-resistant TCOs

Solar Energy Materials & Solar Cells 127 (2014) 174-178

Barrier: temperature-resistant TCO are required for
CIGSe/CIGS PV/PEC devices monolithic integration

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

H.0 9 fo)  CeCaMA, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
H.0> 0 2 2 ¢ US Department of Energy, Washington, DC 20585, USA

ELSEVIER journal homepage: www.elsevier.com/locate/solmat o |
HER catalyst
-Z‘M—' = AL Temperature-resistant high-infrared transmittance indium @Cmm,k
ﬁ‘f o chalcopyric [l T a— w molybdenum oxide thin films as an intermediate window
\!! Glass = < chaicorvrie layer for multi-junction photovoltaics
~ | e — )
H o #ﬂ“ 5 Alexander D. DeAngelis **, Aline Rougier ", Jean-Pierre Manaud , Christine Labrugére ,
w, | l§ o = Eric L. Miller ¢, Nicolas Gaillard
AR > \\\%\\\\\\\\\\\\\\\\\\\\\\ E * Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI 96822, USA
OER Cata\yst > QI il ® CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France

1. Experimental 3. UV-visible measurements
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» o - JPEREEE £ O
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2. Resistivity measurements g .
' & 25 - ==~ as-deposited
—— anncaled
Table 1
Electrical properties measured via the Van der Pauw method showing. 0 , i . ;
. . 500 1000 1500 2000 2500
Sheet resistance R, (Q/sq) Resistivity p (Q-cm)
+015 +0.02x10"* Wavelength (nm)
_a Fig. 1. Optical transmittance of typical IMO and ITO samples measured from 250 to
:Ig :::;ﬁ:’m g;j.g ;ﬁ : }g_ a 2500 nm. Infrared transmittance of IMO remains high even after annealing
IMO unannealed 30031 3.00x 102 whereas that of ITO has decreased significantly.

IMO annealed 4948 495 x10-4

- Annealed IMO is more transparent than as-deposited ITO!
- IMO and ITO have comparable resistivity after annealing

- IMO identified as candidate TCO for CIGSe/CIGS monolithic HPE integration
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House-made annealing furnace

New thin film synthesis process for PV-grade CIGS

1. Cu-In-Ga alloy deposition by co-evaporation with copper in excess
2. Sample & sulfur placed in petri dish or graphite box
3. Annealing under controlled back-ground pressure (450-525°C)

Cus Annealed
CulnS, . —p—

Annealed

Intensity (A.U.)

KCN etched

200 300 400 500 600
Raman shift (cm-l)

Culn alloy
Culn§,

J
L

Intensity (arb. units)

20 25 30 35 40 45 50
20 (deg.)

- CIGS films with improved morphology and microstructure successfully fabricated
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Reported PV-grade “intermediate bandgap”CIGSe and “wide bandgap” CIGS

a. CIGSe (NREL)

910mV Voc reported with 1.67eV CGSe,

0.9
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S 0.7 4 National Renewable Energy Laboratory
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b. CIGS (HZB)

1000 . 895mV Voc reported with 1.95eV CIGS,
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2 * ) 4 CIGS coevaporated S3 1441-1445 (2011), doi: 10.1016/j.s0lmat.2010.11.001.
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