SA 035

Employment Impacts of Infrastructure Development for Hydrogen and Fuel Cell Technologies

Marianne Mintz, Argonne National Laboratory
Catherine Mertes, RCF
June 9, 2015

Overview

Timeline

Barriers

Start date: FY13

Future Market Behavior (A)

End date: Ongoing project

Stove-piped/Siloed Analytical Capability (B)

Inconsistent Data, Assumptions and

Guidelines (C)

Insufficient Suite of Models and Tools (D)

Budget

Funded partners/collaborators

FY14 DOE Funds: \$150k

Argonne National Laboratory

FY15 Planned DOE Funds: \$200k

RCF Economic & Financial Consulting

Including partners

Northwestern University

Relevance

Model development

- Develop consistent framework to estimate impact of hydrogen (H₂) infrastructure investments by FCTO and others
- Develop tool to address barriers/gaps in FCTO analysis/modeling portfolio

Analysis

- Evaluate impacts of alternative H₂ and fuel cell (FC) infrastructure deployment scenarios
- Provide input for evaluating R&D and deployment targets of FCTO program

Stakeholder support

- Work with stakeholders to develop robust, user-friendly tools with appropriate functionality
- Report analytical results to demonstrate benefits of FCTO program

Employment Impacts of Infrastructure Development for Hydrogen and Fuel Cell Technologies

Analysis Framework

- H2A design parameters
- HDSAM/HRSAM parameters
- NREL CDPs
- OEM capital & O&M costs
- Stakeholder experience/data

Models & Tools

- H2A
- HDSAM/HRSAM
- RIMS (Regional I-O Modeling System)

National Labs

- ANL HRSAM
- NREL/SNL H2FIRST

Stakeholder
Analyses
(CAFCP, CCAT,
Industry)

Studies & Analyses

- Employment
 Impacts of CAFCP
 H₂ Roadmap
- U of C Business
 Case analysis
- Employment Impacts of ARRA
 FC Deployments

Stakeholders, FCTO & External Reviewers

- JOBS FC 1.1
- JOBS H2 1.0
- Uncertainty analysis
- CAFCP rollout report
- EERE Webinars
- Stakeholder webinars

JOBS H₂ uses input-output approach

- Input-output methodology converts dollars spent into economic impacts using relationships from USDOC/BEA Regional Input-output Modeling System (RIMS)
- Default or user-input expenditure estimates
 - Reported values
 - Vendor quotes
 - Stakeholder inputs
- User-defined scenarios (e.g., planned rollouts)
- Capture supply chains & induced effects

JOBS H2 models impacts from equipment production/installation, station construction and fuel supply chains (direct + indirect jobs) as well as from ripple effects (induced jobs).

JOBS H₂ models expenditures for many supply chains

FY 2015 milestones

Milestone	Status
Analysis: CAFCP roadmap scenario	
Modeling: Uncertainty analysis*	
Modeling: JOBS H2 1.1	9/30/15
Analysis: Alternative rollout scenario	9/30/15

JOBS H₂ estimated impact of CAFCP's station roadmap

- Modeled development of 100 H₂ stations for a specific launch trajectory
- Varied size and utilization of new stations over time
- Modeled operations of new stations over time
- Included operations (but not development) of existing stations

In CA roadmap analysis station development jobs start almost immediately. Operations jobs grow over time

Station operation is associated with >1,100 CA jobs at full operation

Station development is associated with 100–330 jobs/year in CA through 2022

Station Operations

Timing & magnitude of impacts on CA earnings and economic output are similar to employment impact

- <u>Total</u> earnings and output modulate peaks in station development
- Earnings peak at \$60 million in 2022 then level off
- Economic output peaks at \$230 million in 2022 then levels off
- Stations have greatest impact in launch year as development expenses translate into earnings and output, then drop to steady operational level.

Stochastic simulation feature added to JOBS H₂

Variables simulated:

- Development expenses
- Equipment expenses
- Operational expenses

Probability distribution functions specified

Most probable value assumed to be default value (or user input)

Distribution ranges based on engineering estimates

Two cases demonstrate capabilities and impacts of stochastic module

- Cases <u>based on</u> (not identical to) CAFCP H₂ Roadmap
 - Similar number of new stations (98 vs. 100) deployed
 - Same hydrogen throughput (~36,700 kg/day)
 - Uniform capacity rather than variable capacity stations
 - Constant launch rate (14 stations/year) rather than variable rate
 - Defaults for development and operating costs and local shares rather than Roadmap proposals
- Cases illustrative, not a comprehensive analysis
 - CA case uses CA multipliers & default local shares (i.e., benefits in CA)
 - USA case uses US multipliers & default shares (i.e., benefits in USA)
 - Much higher local shares in US case
- Results differ from CAFCP Roadmap results shown earlier

USA case has ~2x employment impact of CA case

- Total benefits in both cases accrue throughout period.
- Development benefits begin in year 1 and continue through construction of last stations.
- Operations benefits begin 2 years after initial development and continue through period.
- P10 and P90 results spread relatively evenly around most probable. Most parameter distributions assumed symmetric within range.

Impact on economic output has similar pattern

- Impacts decline in final year in US case because operations jobs added are less than development jobs lost
- Impacts do not decline in final year in CA case because fewer development jobs are in state

QR cards & websites direct users to JOBS models

JOBS Quick Response (QR) Card

Available at www.afdc.energy.gov/tools http://jobsmodels.es.anl.gov/main

www.cleancities.energy.gov

US DOE/Clean Cities' Alternative Fuels Data Center tools/calculators page (http://www.afdc.energy.gov/tools)

Calculators

Vehicle Cost Calculator

Compare cost of ownership and emissions for most vehicle models.

Petroleum Reduction Planning

Create a plan for your fleet to reduce petroleum consumption and emissions.

CNG VICE Model 2.0

Evaluate ROI and payback period for natural gas vehicles and infrastructure.

AFLEET Tool

Calculate a fleet's petroleum use, cost of ownership, and air pollutant and GHG emissions.

JOBS Model

Estimate economic impacts of natural gas, hydrogen, or fuel cell

GREET Fleet Footprint Calculator

Calculate your fleet's petroleum use and greenhouse gas emissions

footprint.

EV Readiness Scorecard

Assess your community's readiness for the arrival of plug-in electric

vehicles

Interactive Maps

Alternative Fueling Station Locator

Locate alternative fueling stations and get maps and driving directions. mobile

Analyze vehicle densities and locations of fueling stations and production facilities.

BioFuels Atlas

Compare feedstocks and analyze biofuel production by location.

Truck Stop Electrification Sites

Locate truck stops with electrification sites to reduce the need for idling

Coalition Locations

ind Clean Cities coalitions and contact information for coordinators.

Data Searches

Light-Duty Vehicle Search

Compare light-duty alternative fuel vehicles, electric vehicles, and

hybrids.

Heavy-Duty Vehicle and Engine

Find medium- and heavy-duty alternative fuel vehicles, engines, and hybrid systems.

Fuel Properties Comparison

Compare alternative fuel properties and characteristics.

Laws and Incentives Search

Search for laws and incentives related to alternative fuels and

advanced vehicles.

Find a Car

Compare fuel efficiency, costs, carbon footprints, and emissions.

mobile

State Information

Find state information about alternative fuels and advanced

vehicles.

Collaborators provide key advice/expertise

JOBS H₂ Advisory Group

- California Air Resources Board (CARB)
- California Fuel Cell Partnership (CAFCP)
- Connecticut Center for Advanced Technology (CCAT)
- Fuel and vehicle suppliers
- Researchers

Assistance/role

- Defaults (data/analyses)
- Functionality/granularity
- Future directions/needs
- Beta testing
- Validation

Collaborator	FY 2015 Role	
Argonne	Management and coordination; engineering data collection and analysis; quality assurance; outreach; stochastic modeling; documentation	
RCF	Economic data collection and analysis; quality assurance; code development and application; documentation	
Northwestern U.	Application and upgrading source code; stochastic modeling, quality assurance	
Advisory group	Data/resource acquisition; document review; beta testing	

Select enhancements & analyses planned in FY15-16

<u>Planned model expansions/analyses:</u>

- LH₂, 400+ kg/d
- JOBS FC uncertainty analysis
- Alternative rollout scenarios

<u>Future possibilities (not funded)</u>

- Annual impacts of FC deployments
- Mobile fuelers
- Distributed H2 production
- Employment detail (skills, industries)
- FC applications in vehicles

Summary

- Relevance: Consistent platform to analyze employment and other economic impacts of H_2 and FC investments. Fill gap/barrier in analysis portfolio. Assist DOE and stakeholders with analyses of economic effects of deploying H_2 infrastructure in early markets.
- Approach: Input-output modeling in context of user-friendly tools to calculate supply chain and induced employment, earnings and economic output.
- **Collaborations**: Active partnership between ANL & RCF with FY15 assistance from Northwestern University. Extensive stakeholder interaction.

Accomplishments and progress:

- JOBS H₂ 1.0 launched June 2014 in conjunction with EERE webinar
- Evaluated impact of CAFCP's proposed H2 station rollout
- Added stochastic module to permit uncertainty analysis in JOBS H₂
- Tech transfer via AFDC and QR cards (http://JOBSmodels.es.anl.gov)

Future work:

- Expand JOBS H₂ to include LH₂ and larger stations
- Add stochastic module to JOBS FC
- Analyze additional station rollout scenarios and alternative station options
- Continue validating and refining defaults and improving model functionality