

Pathway Analysis: Projected Cost, Lifecycle Energy Use and Emissions of Emerging Hydrogen Technologies

2015 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting

Washington, DC Todd Ramsden

June 9, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

<u>Timeline</u>

- Start: March 2014
- Finish: September 2015
- 70% Complete

Note: Timeline/completion address only the present pathway analysis; future funding of additional pathway analyses not yet established

Budget

- Total Funding: \$130K
 - 100% DOE funded
- FY14 Funding: \$40K
- FY15 Funding: \$90K

Note: Budget addresses only the emerging-technologies pathway analysis; completed future- and currenttechnologies analyses funded at \$310K during FY12-14

Barriers Addressed

- Stove-piped/siloed analytical capability (B)
- Inconsistent data, assumptions & guidelines (C)
- Insufficient suite of models and tools (D)

Partners

- Alliance Technical Services
- U.S. DRIVE Fuel Pathway Integration Technical Team (FPITT)
- Sandia National Laboratory (SNL)

Project Objectives and Relevance

Hydrogen Pathways Analysis Project Objectives			
Lifecycle evaluation of complete H ₂ production, delivery & dispensing pathways	 Determine cost, energy use, and greenhouse gas (GHG) emissions of H₂ fuel pathways, deployed in a mature market Provide detailed reporting of hydrogen cost and capital costs of complete H₂ fuel pathways to support fuel cell electric vehicles (FCEVs) Lifecycle reporting of energy & feedstock usage and GHG emissions 		
Relevance			
Evaluate the potential of various hydrogen fuel pathways	 Evaluate the potential of various hydrogen production, delivery, and dispensing configurations to meet DOE's \$4/kg cost target Evaluate pathways to understand associated energy use and GHG emissions 		
Consistent and transparent analysis of hydrogen technologies	 Common modeling platform and assumptions with detailed reporting of input parameters and results allows for cross-pathway comparisons Helps DOE overcome stove-piped analysis and inconsistent data by providing a modeling framework using published DOE component models 		
Assist in R&D decisions	 Helps assist DOE's Fuel Cell Technology Office (FCTO) in goal setting and R&D decisions by providing detailed understanding of technologies In-depth analysis of pathways provides insight into cost drivers 		
Industry review and model improvement	 Industry review of input parameters and results helps validate and improve the MSM and the associated component models In-depth reviews help determine modeling gaps, inconsistencies & concerns 		

Project Overview

Approach

*Lifecycle Energy Emission, & Cost Analysis of H*² *Production, Delivery & Dispensing Pathways*

<u>Analysis</u> Framework

- Macro System Model
 Design parameters from the H₂ Delivery Scenario Analysis Model (HDSAM) & H₂ Prod. Analysis model (H2A)
- GREET (GHG, Regulated Emissions & Energy in Transportation) data
- Annual Energy Outlook (AEO) 2009 energy & feedstock data
- H₂ Analysis Resource Center (HyARC) data

US DRIVE FPITT

SNL - MSM

Outputs & Deliverables

- Pathway Reports
- Pathway input & output spreadsheets

Detailed understanding of H₂ production & delivery pathways

System for documenting assumptions & data for well-to-wheels analysis of hydrogen pathways

NREL, DOE Fuel Cell Technologies Office & US DRIVE Reviews

Approach

Key Input Parameters & Assumptions

The Macro-System Model (MSM) is being used to link H2A, HDSAM, GREET1, GREET2, and the Cost-Per-Mile tool and as the I/O interface

Modeling Assumptions

- Future technologies for H₂ production, delivery and dispensing
- Urban demand area,
 1.25 million population (nominally Indianapolis)
- 15% FCEV penetration
- Station size of 1000 kg/d for delivered hydrogen
- Station size of 1330 kg/d for distributed hydrogen
- 62 mi. delivery distance

Analysis Assumptions

- 2025 start-up year
- Mature market assumed
- 2007\$ cost reporting
- 40-year analysis period for central production
- 20-year analysis period for distributed production
- Feedstock & utility costs from the 2009 annual energy outlook (AEO), reflect national averages
- Consider upstream energy

Vehicle Assumptions

- 2020 FCEV purchase
- 15,000 miles/yr VMT;
 160,000 mile lifetime
- Mid-size FCEV modeled (chassis comparable to conventional vehicle)
- 58 mpgge (miles per gallon gasoline equivalent) on-road fuel economy; sensitivity at 68 mpgge
- Vehicle cost with fiveyear ownership period

Pathways Analyzed in 2014/2015

8 future-technology production, delivery & dispensing pathways completed in FY2014; analysis of 4 emerging technology pathways in FY2015

iNatural Gas ReformingDistributed Prod.700 bariiiEthanol ReformingDistributed Prod.700 bariiiiGrid ElectrolysisDistributed Prod.700 bariviCentral Natural Gas ReformingPipeline700 barvCentral Natural Gas ReformingGaseous Truck700 barviCentral Natural Gas ReformingLiquid Truck700 barviiiCentral Natural Gas ReformingLiquid Truck700 barviiiCentral Natural Gas ReformingDistributed Prod.700 barviiiCentral Natural Gas ReformingDistributed Prod.700 barviiiCentral Natural Gas ReformingLiquid Truck700 barviiiCentral Natural Gas ReformingPipeline700 barviiiCentral Natural Gas Reforming w/CCSPipeline700 bar				Production Feedstock / Technology	Delivery Mode	Dispensing Mode
Future technology pathways (analysis completed as of 2014 AMR)iiEthanol ReformingDistributed Prod.700 barVGrid ElectrolysisDistributed Prod.700 bar700 barVCentral Natural Gas ReformingPipeline700 barVCentral Natural Gas ReformingGaseous Truck700 barViiCentral Natural Gas ReformingLiquid Truck700 barViiiCentral Natural Gas ReformingLiquid Truck700 barViiiCentral Natural Gas ReformingDispeline700 barViiiCentral Natural Gas ReformingDispeline700 barViiiCentral Natural Gas Reforming w/CCSPipeline700 bar		٢	i	Natural Gas Reforming	Distributed Prod.	700 bar
Future technology pathways (analysis completed as of 2014 AMR)iiiGrid ElectrolysisDistributed Prod.700 barVCentral Natural Gas ReformingPipeline700 barVCentral Natural Gas ReformingGaseous Truck700 barViCentral Natural Gas ReformingLiquid Truck700 barViiiCentral Natural Gas ReformingLiquid Truck700 barViiiCentral Natural Gas ReformingLiquid Truck700 barViiiCentral Natural Gas ReformingDistributed Prod.700 barViiiCentral Natural Gas ReformingPipeline700 barToo barViiiCentral Natural Gas Reforming w/CCSPipeline			ii	Ethanol Reforming	Distributed Prod.	700 bar
technology pathways (analysis completed as of 2014 AMR)ivCentral Natural Gas ReformingPipeline700 barviCentral Natural Gas ReformingGaseous Truck700 barviiCentral Natural Gas ReformingLiquid Truck700 barviiiCentral Natural Gas ReformingLiquid Truck700 barviiiCentral Natural Gas ReformingLiquid Truck700 barviiiCentral Natural Gas ReformingDipeline700 barfemerging1Central Natural Gas Reforming w/CCSPipeline700 bar	Future		iii	Grid Electrolysis	Distributed Prod.	700 bar
pathways (analysis completed as of 2014 AMR)vCentral Natural Gas ReformingGaseous Truck700 barviCentral Natural Gas ReformingLiquid Truck700 barviiCentral Natural Gas ReformingLiquid TruckCryo-compressedviiiCentral Wind ElectrolysisPipeline700 barEmerging1Central Natural Gas Reforming w/CCSPipeline700 bar	technology		iv	Central Natural Gas Reforming	Pipeline	700 bar
completed as of 2014 AMR)viCentral Natural Gas ReformingLiquid Truck700 barviiCentral Natural Gas ReformingLiquid TruckCryo-compressedviiiCentral Wind ElectrolysisPipeline700 barEmerging1Central Natural Gas Reforming w/CCSPipeline700 bar	pathways (analysis completed as of 2014 AMR)	٦	V	Central Natural Gas Reforming	Gaseous Truck	700 bar
of 2014 AMR) vii Central Natural Gas Reforming Liquid Truck Cryo-compressed viii Central Wind Electrolysis Pipeline 700 bar Emerging 1 Central Natural Gas Reforming w/CCS Pipeline 700 bar			vi	Central Natural Gas Reforming	Liquid Truck	700 bar
viii Central Wind Electrolysis Pipeline 700 bar Emerging 1 Central Natural Gas Reforming w/CCS Pipeline 700 bar			vii	Central Natural Gas Reforming	Liquid Truck	Cryo-compressed
Emerging I Central Natural Gas Reforming w/CCS Pipeline 700 bar			viii	Central Wind Electrolysis	Pipeline	700 bar
tochnology	Emerging	٢	1	Central Natural Gas Reforming w/CCS	Pipeline	700 bar
pathways 2 Central Photo-Biological H2 Pipeline 700 bar	pathways (results reported below)		2	Central Photo-Biological H2	Pipeline	700 bar
(results 3 Central Photo-Electrochemical H2 Pipeline 700 bar			3	Central Photo-Electrochemical H2	Pipeline	700 bar
below) L 4 Central Solar Thermo-Chemical H2 Pipeline 700 bar		L	4	Central Solar Thermo-Chemical H2	Pipeline	700 bar

Progress

Future Technologies Pathway Evaluation Completed

Report on pathways evaluation of future technologies completed (under DOE review); Current technologies report published in 2014 (available on-line)

- Lifecycle cost, energy use and GHG emissions evaluation of 8 futuretechnology hydrogen production, delivery and dispensing pathways completed in FY 2014 (results presented at 2014 AMR)
- Future-technologies report completed (under review)
- Lifecycle cost energy use and GHG emissions evaluation of 10 current-technologies hydrogen pathways completed in FY 2013
- Current pathways report published and available on-line at:

http://www.nrel.gov/docs/fy14osti/60528.pdf

Hydrogen Pathways

Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory

M. Laffen, T.A. Timbario Alliance Technical Services, Inc.

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Technical Report NREL/TP-6A10-60528 March 2013

Contract No. DE-AC36-08GO28308

Accomplishment

Dispensed H₂ Cost Results – Production & Delivery

Current modeling of emerging-technology pathways finds H₂ costs exceeding the \$4/kg target; further R&D is needed, especially for renewable paths

Dispensed H₂ Cost Results – Breakdown

Detailed H₂ cost breakdown provides insight to major costs. Photo-biological cost drivers include: \$2/kg for algal ponds, ~\$4/kg O&M, \$1.80kg pipelines

Dispensed H₂ Cost Results – Breakdown

Detailed H₂ cost breakdown of solar-thermochemical path. Cost drivers include: \$1.30/kg for heliostats, \$1.80kg pipelines

Station Energy Station Other O&M Station Capital - Dispenser & Accessories Station Capital - Low Pressure Storage Station Capital - Cascade Storage Station Capital - Compressor **Gaseous Refueling Station Geologic Storage Distribution Pipeline Transmission Pipeline Central Compressor** Delivery Energy/Fuel Delivery Other O&M Delivery Capital Delivery Production Feedstock Production Other O&M Heliostats Solar reactors, ferrite, ZrO2 □ Pumps, exchangers, BOP Compression System Production Capital Production

Total Cost Per Mile Results – Vehicle & Fuel

H₂ fuel costs represent 15-25% of ownership costs for emerging technologies; FCEV depreciation & financing represent ~50% or more of costs

*Similar results available for Photo-Electrochemical & Solar Thermo-Chemical H*₂ *pathways*

Well-to-Wheels Energy Results

Low production energy for renewable pathways (some grid electricity used)

Well-to-Wheels **Total Energy** (not including renewable production feedstocks) Natural Gas SMR w/CCS: 225,000 BTU/gge Photo-electro-chemical: 52,000 BTU/gge Solar Thermo-chemical: 35,000 BTU/gge **Photo-biological:** 72,000 BTU/gge

Initial results based on pathway electricity, natural gas, and petroleum energy use – No specific GREET cases

Similar results available for SMR w/CCS & Solar Thermo-chemical H₂ pathways

Well-to-Wheels GHG Emission Results

Carbon sequestration path has significantly lower GHGs from production

Production-Related

GHG Emissions

without sequestration:

10,000 g CO₂-eq/gge

Comparative Results – Direct Energy Use

Renewable pathways: small amount of direct energy use from ancillary production processes, compression & on-site cooling

Accomplishment

Comparative Results – H₂ Cost Breakdown

Emerging, lower carbon H₂ pathways have costs higher than \$4/kg target

NATIONAL RENEWABLE ENERGY LABORATORY

Comparative Results – H₂ Production Cost

Renewable emerging H₂ production costs driven by capital and fixed O&M costs

Accomplishment

Comparative Results – Capital Cost

Emerging, renewable pathways require substantial capital investment based on current level of technology development; more R&D is needed

Challenges and Barriers

Energy use and GHG emission results are preliminary: No GREET cases. Preliminary GHG results discussed with DOE and U.S. DRIVE

- Cost and lifecycle analysis based on publicly available H2A and HDSAM models, but specific cases for the emerging renewable production pathways are not available in GREET
 - Preliminary modeling of upstream energy and GHG emissions conducted, with results based on production electricity usage and GREET factors for these energy types
 - Preliminary GHG results for emerging renewable paths shared with DOE and U.S. DRIVE/FPITT
- Recommendation made that Argonne National Lab be funded to develop specific cases for the emerging renewable pathways
 - Lifecycle assessment of GHG emissions will be revised based on new GREET cases, once developed

Model Gaps and Concerns Raised

Industry reviewers would like a better understanding of the processes involved for emerging renewable hydrogen production

Industry comments on modeling of emerging production technologies:

- Contingency costs may be under-estimated considering the low technology-readiness levels (TRL) of renewable processes analyzed
- Need better understanding of the processes modeled and comparison to similar fuel production processes
 - e.g., algal processes for non-H2 fuel production
- Total electricity usage and/or necessary grid electricity may be underestimated (solar-only electricity may be inadequate)
- Land usage may be an important consideration for renewable paths
 - Overall solar-to-hydrogen efficiency of the process will impact both capital cost and total land usage requirements
- CCS costs may be underestimated (DOE expected to fund CCS cost review)
- Specific cases for the emerging renewable production pathways are not currently available in GREET

Collaborations & Technology Transfer

Collaborations and Acknowledgements:

Pathway Analysis Collaborators	 U.S. DRIVE Fuel Pathway Integration Technical Team (FPITT) Review of key assumptions, modeling parameters, analysis inputs and results Alliance Technical Services
Core Model Developers (funded separately by	 GREET: Argonne National Laboratory H2A Production model: NREL H2A Production case studies: NREL HDSAM Delivery model: Argonne National Laboratory MSM: NREL and Sandia National Laboratory
DOEJ	Cost Per Mile tool: Alliance Technical Services

Technology Transfer Activities:

Tech Transfer

• Not applicable (analysis activity based on publicly available models, with results made public when finalized)

FY 2015 Activities:

- Joint FPITT and Hydrogen Production Tech Team meeting to discuss emerging H₂ production technologies and processes, modeling gaps and concerns, and potential updates to the emerging-technologies analysis
- Conduct initial analyses of emerging hydrogen delivery and on-board storage technologies, potentially including:
 - High-pressure gas truck delivery, 500 bar dispensing, cold- and cryocompressed on-board storage, sorbent-based storage systems
- Potential Future Work (funding dependent):
- Complete emerging production pathway analysis based on new GREET cases for photo-biological, photo-electrochemical and solar thermo-chemical H₂
- Complete evaluation of emerging delivery and storage technologies
- Conduct assessments of additional currently available technologies such as bio-methane SMR and tri-generation (H₂, heat, power) [AMR suggestion]
- Revise FY13 current-technologies pathway evaluation based on new data from recent hydrogen fuel infrastructure/installations [AMR suggestion]

Project Summary

Project Overview:

- Lifecycle assessment of complete hydrogen production, delivery, and dispensing pathways evaluating cost, energy use & GHG emissions
- Assessment conducted with MSM (linking H2A, HDSAM, and GREET)
- Evaluation of future-technology pathways completed in FY 2014
- FY 2015 analysis focused on emerging-technology pathways: natural gas reforming with CCS, photo-biological, photo-electrochemical and STCH
 - Preliminary GHG assessment of renewable paths shared only with DOE & FPITT

Emerging-Technology Pathways:

- Current modeling of emerging-technology pathways finds hydrogen costs exceeding the \$4/kg target; further R&D is needed, especially for renewable paths
- H₂ fuel costs represent 15-25% of ownership costs for emerging technologies; FCEV purchase costs represent ~50% or more of costs
- Renewable H₂ production costs driven by capital and fixed O&M costs

Questions & Discussion

THANKS!

Todd Ramsden National Renewable Energy Lab todd.ramsden@nrel.gov 303-275-3704

Hydrogen Pathways

Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory

M. Laffen, T.A. Timbario Alliance Technical Services, Inc.

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Technical Report NREL/TP-6A10-60528 March 2013

Contract No. DE-AC36-08GO28308

Current technologies report available at: http://www.nrel.gov/docs/fy14osti/60528.pdf

BACK-UP SLIDES

Acronyms

AEO	DOE Energy Information Agency's Annual Energy Outlook
CCS	Carbon Capture and Sequestration
CSD	Compression, Storage & Dispensing
DOE	U.S. Department of Energy
FCEV	Fuel Cell Electric Vehicle
FCTO	DOE's Fuel Cell Technologies Office
FPITT	U.S. DRIVE Fuel Pathway Integration Technical Team
GHG	Greenhouse Gas
GREET	Greenhouse gas, Regulated Emissions & Energy in Transportation model
H ₂	Hydrogen
H2A	DOE's H2A ("hydrogen analysis") Production model
HEV	Hybrid Electric Vehicle
HDSAM	DOE's Hydrogen Delivery Scenario Analysis Model
HyARC	Hydrogen Analysis Resource Center
MPGGE	Miles per gallon gasoline equivalent
NREL	National Renewable Energy Laboratory
SNL	Sandia National Laboratory
U.S. DRIVE	U.S. Driving Research and Innovation for Vehicle Efficiency Partnership
VMT	Vehicle Miles Traveled
WTW	Well-to-Wheels (i.e., fuel-cycle)