

Hydrogen Contaminant Detector

Danny Terlip* (NREL), Scott McWhorter (SRNL),
Bill Buttner (NREL), Chris Ainscough (NREL)

June 11, 2015

*Presenter

Project ID # SCS024

This presentation does not contain any proprietary, confidential, or otherwise restricted information

The Hydrogen Fueling Infrastructure Research and Station Technology Project

Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional gasoline/diesel stations as vehicles are introduced (2015-2017), and transition to advanced refueling technology beyond 2017.

Reference Station Design

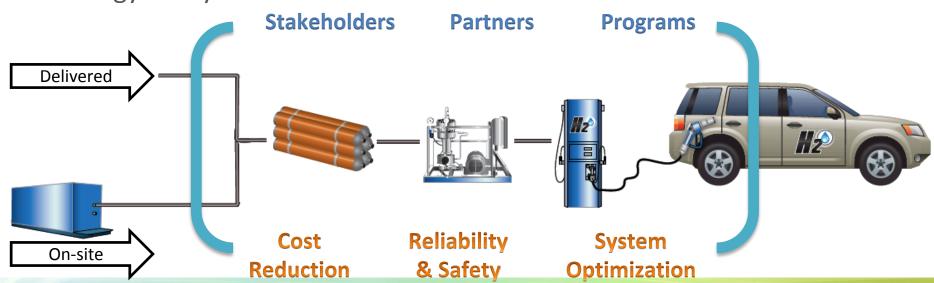
- Goal: Develop station designs based on state-of-the-art components and characterize cost, throughput, reliability, and footprint.
- Results: Five detailed reference station designs were published in a report yesterday.
- Impact: Helps station developers evaluate site suitability, encourage interchangeability, cost transparency, inform roll-out scenarios, and AHJ education.

Hydrogen Contaminant Detector

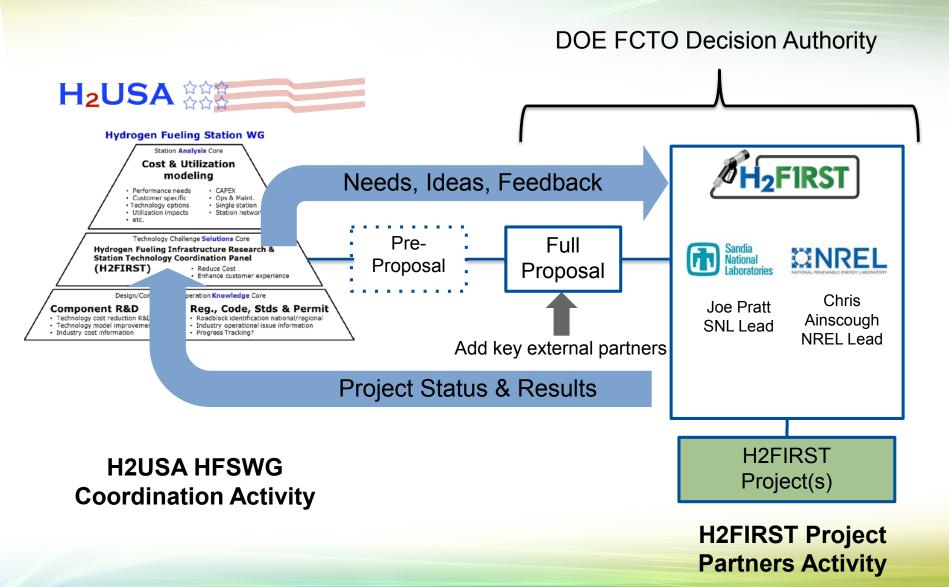
- Goal: Develop requirements for inline fuel quality system for installation at stations
- Results: Report released yesterday identifying the current state of the HCD market, and gaps between that and use requirements.
- Impact: FCEVs will no longer be the "canary in the coal mine" when it comes to contaminants.

Hydrogen Station Equipment Performance (HyStEP) Device

- Goal: Develop a hydrogen station test device to validate station compliance with SAE J2601/HGV 4.3.
- Results: Device design review is complete


 Impact: HyStEP will allow for safe, effective qualification of stations without using actual vehicles, which is the status quo.

H2FIRST Long-term Objectives



- Reduce the installation cost of a hydrogen fueling station to be competitive with conventional liquid fuel stations.
- Improve the availability, reliability, and cost while ensuring the safety of high-pressure components.
- Focus a flexible and responsive set of technical experts and facilities to help solve today's urgent challenges and the future unpredicted needs.
- Enable distributed generation of renewable hydrogen in a broader energy ecosystem.

H2FIRST Project Coordination

Overview

Timeline

Task Start Date: Q4 2014

Task End Date: Q3 2015

Percent Complete: 95%

Budget

Total Task Budget: \$30k

DOE Share: \$30k

Funds Spent To-date: \$15k

Barrier – Safety Codes and Standards

A. Safety Data and Information:Limited Access and Availability

Partners

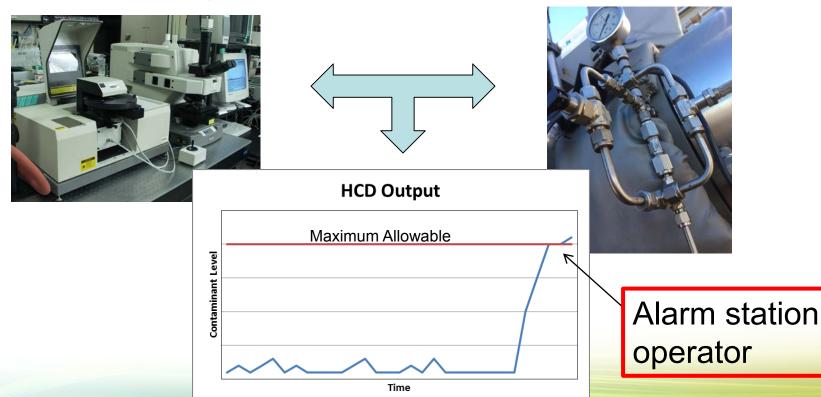
- National Labs: NREL* and SRNL
- California Air Resources Board
- SAE Fuel Cell Interface Task Force
- DOE-EERE-FCTO

*Task lead

Objective and Relevance

 Goal - Ensure high quality fuel is dispensed to FCEV customers for optimal FC operation by testing for critical contaminants in the fuel before it is dispensed

Impact


- Educate station operators about contaminants relevant to station type
- Inform station developers of current status of relevant technology
- Validate stated performance of analyzers
- Determine requirements for station integration
- Provide information for technology developers
 - Define application requirements
 - Provide a gap analysis between requirements and status of current technology

Approach: Define a Hydrogen Contaminant Detector

- A hydrogen contaminant detector (HCD) is defined as a gas analyzer and integration apparatus
- An integrated HCD must identify and report poor quality fuel BEFORE it is dispensed to FCEV customers

Approach: Identify HCD Challenges

Desired Characteristics	Challenges	
Ease of station integration	 Multiple Station configurations Extreme gas pressure and temperature Hazardous environment rating 	
Contaminants Detected	 SAE J2719 identifies large list of contaminants Not all contaminants are probable in stations 	
Levels of Detection	SAE J2719 concentration levels difficult to achieve with current tech	
Cost	 Current technology is laboratory grade Expensive Maintenance is frequent and specialized 	

Near term solution not likely "one size fits all"

Approach: Refine the Application

- Unfeasible to detect all contaminants listed in SAE J2719 at required levels
- Not meant to replace regular sampling and laboratory testing
- Target station characteristics to reduce requirements of HCD

Approach: HCD Current Focus

- First deliverable (milestone)
 - HCD Requirements Definition
 - Market survey of viable HCD technologies
 - Report published
- Develop proposal for second phase
 - Integrate technologies into research and commercial station
 - Gather input from DOE, industry and project team

H2FIRST Hydrogen Contaminant Detector Task

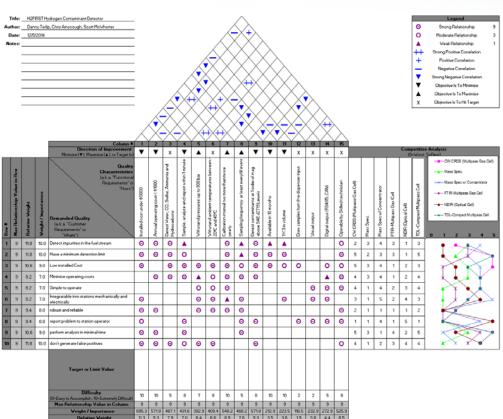
Requirements Document and Market Survey

Danny Terlip, Chris Ain scough, and William Buttner National Renewable Energy Laboratory

Scott McWhorter Savannah River National Laboratory

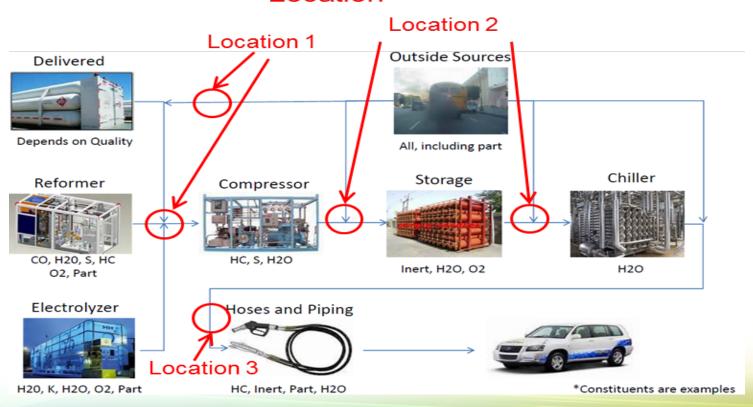
NRtL is a national laboratory of the U.S. Department of Energy, Office of Energy, Efficiency & Renewable Energy, openeded by the Altience for Sustainable Energy, LLC, under contract ID-ACS-6350-02538.

Sandra National Laboratories is a multi-program laboratory managed and operated by Sandra Corporation, a wholly owned subardiery of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract Ub-AC04-944.25003.


Technical Report NREL/TP-5400-64063 SAND2015-xxxx April 2015

First phase report published, second phase under proposal

- **ENGINEERING REQUIREMENTS** developed with input from industry, state agencies, codes and standards committees
 - **Detection abilities**
 - Types
 - Concentrations
 - Cost
 - **Availability**
 - Ambient environmental
 - Gas sampling
 - Pressure
 - Temperature
 - Volume



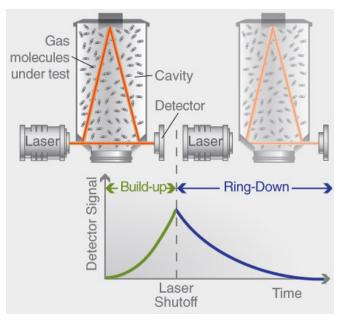
Customer and functional requirements determined and compared

• **ENGINEERING REQUIREMENTS** – station integration

O Possible HCD Location

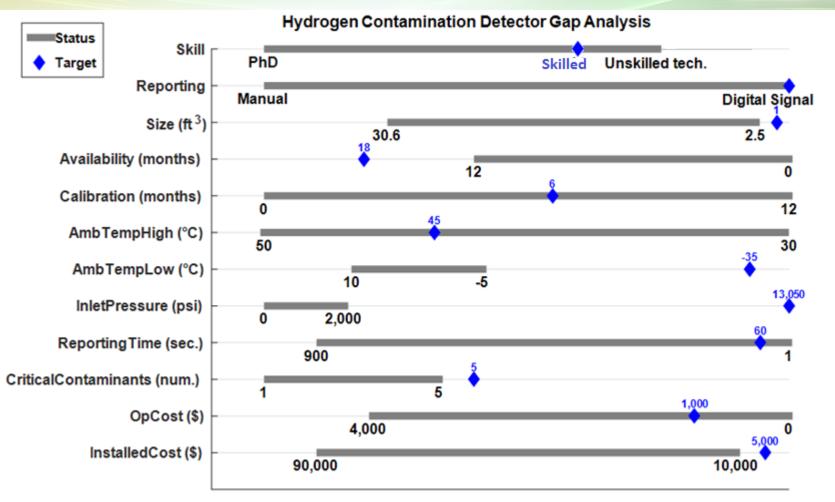
ENGINEERING REQUIREMENTS

Contaminant	Detection Level Requirements (ppmv)		
	HCD 1 (SMR)	HCD 2 (H ₂ O electrolysis)	
Water	50	50	
Carbon Monoxide	2	-	
Total Sulfur	0.04	-	
Ammonia	1	-	
Total Hydrocarbons (as C ₁)	20	20	


Parameter	Nominal Specification			
Parameter	Location 1	Location 2	Location 3	
Process Pressure (bar)	< 300	< 900	< 900	
Process Temperature (°C)	-20 < T < 100	-20 < T < 100	-40 < T	
Ambient Temperature (°C)		-35 < T < 45		

Device requirements defined for different stations

- MARKET SURVEY 8 week study into currently available, potential hydrogen contaminant detectors
 - Survey responses from 10 companies
 - Multiple technologies explored
 - Gas chromatograph, mass spectroscopy, Fourier transform infrared spectroscopy, nondispersive infrared spectroscopy, laser absorption continuous wave cavity ring down spectroscopy and concentrator technologies
 - Gap analysis on state of technology versus engineering requirements


Credit: www.picarro.com

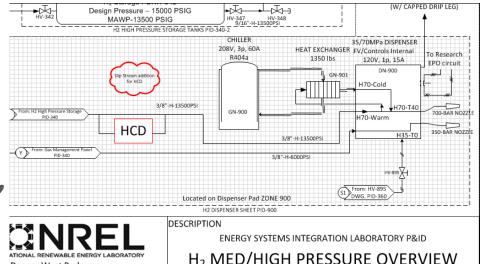
Current state of the market compared with device requirements

Accomplishments: HCD Gaps

Created: Dec-15-14 4:47 PM

The **gray bars** indicate the current state of the market The **blue diamond** indicates engineering requirements

HCD Next Steps – Proposal Highlights


- Work with HCD manufacturers to obtain units for testing
 - Anticipate devices will be ready by June 2015 or sooner
- Design and build integration and sampling apparatus
 - 70MPa capable near the dispenser

Communicate with project team to identify most important aspects of

testing

 Develop test plan for bench-top testing and station integration

- Verify performance in lab first
- Generate report on performance, maintenance and costs

Phase 2 proposal for component testing submitted

Summary

- Accomplishments
 - A hydrogen contaminant detector was defined
 - Challenges were presented for installation at commercial stations
 - A set of engineering requirements was developed
 - A market survey was performed on applicable technologies
 - An analysis was conducted to highlight the gaps between HCD requirements and the current state of technology
- Stakeholders who benefit
 - Station developers
 - Station operators
 - Legislative bodies
 - Technology developers
 - Automotive OEMS
 - FCEV customers

