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• Project Start Date: 2/1/09
• Project End Date: 6/30/15
• 82% Complete

• Barriers addressed
– A) System Weight and Volume
– E) Charging and Discharging 

Rates
– H) Balance of Plant

• Total Funding Spent*: 
$2,649,224

• Total DOE Project Value: 
$2,111,935

• Total Cost Share: $600,400

* As of 1/31/15

Timeline

Budget

Barriers

• HSECoE Partners - SNRL, 
PNNL, LANL, NREL, JPL, 
United Technologies, GM, Ford, 
BASF, Hexagon Lincoln, UM, 
UQTR

• Center Lead - SNRL

Partners

Overview
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Relevance -Objectives

• Phase 3 Objective – Use enhanced heat and mass transfer 
available from arrayed microchannel processing technology to design, 
fabricate and test a modular adsorption task insert (MATI) prototype. 
The objective of phase 3 is to demonstrate fundamental technical 
feasibility and validate simulations. Smart goals include:

– June 30th 2015 Smart Goal - Demonstrate performance of subscale system 
evaluations and model validation of a 2L adsorbent system utilizing a MATI 
thermal management system having 54 g available hydrogen, internal 
densities of 0.10g/g gravimetric, and 27 g/L volumetric.

• Barriers Addressed
– Reduce system size and weight (Barrier A)
– Charging and Discharging rates (Barrier E)
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Relevance – Modular Adsorption 
Tank Insert (MATI)

• Optimized for use with densified adsorbent media
o Low void faction (<5%)
o Insensitive to mechanical failure of the media

• Facilitates use of fuel cell waste heat for storage 
discharge improving onboard efficiency from 90% for 
resistance heating to 98%

• Separates cooling function from adsorption material 
allowing a wider range of cooling strategies

• Attractive high volume, low cost manufacturing options 
exist.
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Adsorbent Heat Exchanger Types 

"Sub%100%")values:
Gravimetric*Capacity:**0.0341*kgH2/kgsystem*(62%*of*Target2017)
System*Cost:**$15.45*/kWhnet*(78%*of*Target2017)
Volumetric*Density:**0.02072*kgH2/Lsystem*(52%*of*Target2017)
Fuel*Cost:**$6.00*/gge*(67%*of*Target2017)
Loss*of*Usable*H2:**0.2670*gH2_lost/hr/kgH2_usable*(19%*of*Target2017)
WellsStoSPower*Plant*Efficiency:**40%*(67%*of*Target2017)

NOTE: Changed chart order to bring "blue spider" to the front
Did NOT change the actual target order
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Pucks;)4.4:1)Type)1)Al)Tank)w/)LN2;)MATI)HX;)100)bar,)80)K)*

"Sub%100%")values:
Gravimetric*Capacity:**0.0352*kgH2/kgsystem*(64%*of*Target2017)
System*Cost:**$12.73*/kWhnet*(94%*of*Target2017)
Volumetric*Density:**0.01749*kgH2/Lsystem*(44%*of*Target2017)
Fuel*Cost:**$6.00*/gge*(67%*of*Target2017)
Loss*of*Usable*H2:**0.2670*gH2_lost/hr/kgH2_usable*(19%*of*Target2017)
WellsRtoRPower*Plant*Efficiency:**40%*(67%*of*Target2017)

NOTE: Changed chart order to bring "blue spider" to the front
Did NOT change the actual target order
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Approach – Technical and 
Programmatic

• Phase 3: MATI Subsystem Prototype Construction, 
Testing, and Evaluation:

– Using simulation and previous experience from Phase 1 and 2, 
develop a design for the MATI that achieves the performance included 
in our first smart goal.

– Fabricate several MATI prototypes.
– Conduct acceptance testing at OSU.
– Conduct performance testing at SRNL to demonstrate our second 

smart goal.
– Validate simulations against performance results.
– Demonstrate a variant with conduction enhanced pucks
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Technical Accomplishments

• Technical Progress Relative to 2015 Milestone – Completed the 
design, assembly and pressure testing of two MATI prototypes which were 
delivered to SRNL for testing.

• Technical Progress relative to Objectives: Reduce the size and 
weight of storage and Improve charging and discharging rate of storage 
– MATI
• Completed assembly and pressure testing of three prototype MATI’s
 Two have been shipped to SRNL for performance testing
 One will be used at OSU for conduction enhancement 

• Conduction enhanced pucks have been designed and are being 
fabricated

• Completed assembly of OSU test apparatus for acceptance testing 
and testing of conduction enhancements

• In collaboration with SRNL, completed modifications to simulation to 
allow model validation
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Barriers A and E –MATI Functional 
Criteria and Design Specifications

• Key MATI Design Specifications
– Simple baseline MATI design
– Stainless steel construction for low fabrication risk
– Relatively high MOF bed density (e.g. ≥ 0.4 g/cc) for puck integrity

• Phase 3 MATI Functional Criteria:
– Provide data for model validation instead of meeting specific DOE 

goals
– Sufficient temperature measurements within the MOF beds, cooling 

plates and tank interior surface 
– Fit inside a 2 liter aluminum tank with minimal thermal communication
– Withstand 100 bars external pressure during adsorption and up to 35 

bars internal pressure during desorption
– Durable puck design for both testing and transportation
– Sizable H2 storage capacity within 3 min charge cycle
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Barriers A and E – Puck Design (Ford 
and University of Michigan)

• 10 cm diameter to be fit inside the 2 liter tank
• 1.5 cm bed height based on adsorption 

simulation and consideration of  bed durability
• Relatively high bed density (e.g. 0.4 g/cc) for 

puck integrity
• Rounded design with approximate TC 

locations shown (details to be decided)

Half-bed 
design is to 
maximize MOF-
5 volume while 
enabling the 
assembly 
process

TCs at Different 
Depth

TCs at Different 
Radius

Current Half-bed Design
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Barriers A and E – MATI Test Article 
Assembly and testing

• Cooling plates were photochemically machined & diffusion 
bonded.

• Two header tubes were vacuum brazed onto each cooling 
plate, allowing each cooling plate flow examination.

• Cooling plates were stacked together using orbital welding.

MATI assembly pressure drop vs. flow
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Barriers A and E – MATI Test Article 
Assembly and testing

• Original Aluminum tank with plug design failed 
to seal under cryogenic conditions.

• 1st MATI assembly was installed in flanged tank 
and included 32 unsheathed fine gage 
Thermocouples. 

• Puck assembly took place inside a glove box to 
minimize exposure to air.

• Three MATI prototypes have been assembled.
• 2nd and 3rd MATIs  were made for flanged tank 

and LN2 tubes do not require a bend.

1st

MATI
2nd 
MATI
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Barriers A and E – Experimental system 
Requirements

• Fabrication and Assembly of MATI and Integrated 
Storage Vessel
– Individual MATI cooling plate was exposed to 100 bars external 

differential gas pressure and demonstrated no measurable deflection 
of cooling plate that could result in flow maldistribution. 

– Individual MATI cooling plate was exposed to 100 bars internal 
differential pressure and demonstrated no measurable deflection, 
delamination or leakage that would render it inoperable.

– Fully assembled five plate MATI was installed in stainless steel 
flanged pressure vessel
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Barriers A and E – Integrated System 
Assembly
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Barriers A and E – Integrated System 
Assembly

• OSU assembled and sealed an integrated pressure vessel containing 16 
compacted MOF-5 beds, 30 fine gauge wire thermocouples (one 
thermocouple located in 14 of MOF-5 beds, one bed containing three 
thermocouples, one bed containing four thermocouples, two 
thermocouples on outside surface of MOF-5 beds, four located on non-
contacting surface of MATI plate, three on inside surface of stainless steel 
vessel)

• Passed 48 hour pressure decay test at 100 bar using Helium 
• In-situ activation of MOF-5 beds – held system under vacuum for 24 

hours.  Subsequently wrapped electrical heating tape around pressure 
vessel and heated to 115oC under vacuum for 24 hours.

• Performed and passed second pressure decay test at 100 bar using He
• Upon first addition of LN2 around the pressure vessel, three of eight  

thermocouple seals failed causing gas leaks out of vessel
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Barriers A and E – OSU Acceptance  
Testing 

• Upon cryogenic LN2 addition, approximately 32” below location of 
thermocouple pass-through, gas began to leak along thermocouple wire

• Attempted to fix using a secondary application of epoxy on outside of tube 
and extending ½” above top of tube end, however exposure to LN2 cause 
cracking of epoxy

• After attempted OSU fix 
failed and a successful 
cryogenic sealing solution 
was developed by SRNL, 
the decision was made in 
conjunction with SRNL to 
ship non-functioning MATI 
system to SRNL for 
complete testing Location of  

gas leak

16



Barriers A and E - Modeling

• Systematic enhancement of OSU – Phase II integrated 
COMSOL modeling effort
– Improve simulation results for the adsorption of H2 on compressed 

MOF-5 beds
– Transition from ideal gas law concentration (density) calculation and 

double interpolation of remaining fluidic and thermal properties 
(Phase II) to polynomial calculation developed by Savannah River 
National Laboratory (Phase III)

– Phase II simulation utilized variable isoteric heat of adsorption to 
determine the heat released due to adsorption of H2 within 
compressed bed

– Phase III utilizes internal energy and enthalpy to determine the 
energy change and heat released during the adsorption process

B. Hardy, C. Corgnale, R. Chahine, M.-A. Richard, S. Garrison, D. Tamburello, D. Cossement, and D. Anton, 
“Modeling of adsorbent based hydrogen storage systems,” International Journal of Hydrogen Energy, vol. 37, no. 
7, pp. 5691–5705, Apr. 2012.
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Barriers A and E - Modeling
An improved representation of the 
Phase II experimental data from the 
simulation was achieved with help of 
SRNL and updates to H2 properties 
and kinetic expression
• Lowered maximum absolute and 
relative errors at all 6 thermocouples 
in porous bed;
• Reduced average relative error 
below 3% at all thermocouples; 

– Phase II resulted in 4 of 6 below 3%
• Reduced high average absolute
error to 3.4 % from 5.8%
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Barriers A and E - Modeling

• To fully model all regions of H2 gas flow, 
heat transfer fluid flow and the adsorbent 
material, a model geometry was created 
in SolidWorks and transferred within 
COMSOL using LivelinkTM license.

• To model this complex geometry OSU 
has acquired a new server utilizing 24 
cores and 256 GB ram.

• Single unit cell consists of 
– One single cooling plate with headers
– Heat transfer fluid flow path
– Two half height H2 distribution layers
– Two half height MOF-5 beds
– Annular region between MATI and tank
– H2 void spaces resulting from round bed design
– Stainless steel storage tank 
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Barriers A and E – Conduction 
Enhancement

• Adsorption and desorption are heat 
transfer limited due to poor thermal 
conductivity of  MOF

• Aluminum pins can greatly reduce 
charge and discharge time

• Tests will involve 1) Al pin enhanced 
pucks, 2) Al pin + ENG enhanced 
pucks and 3) ENG enhanced pucks
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Response to Previous Year Reviewer 
Recommendations 

• “A useful addition would be the development and testing of a 
method for enhancing the thermal conduction within the media 
puck” – Conduction enhancements have been fabricated and are being 
tested as part of our Phase 3 scope of work.

• “OSU should confirm the conceptual design for the MATI device 
via experiment and confirm reliable separation of fluids” – The 
MATI has been successfully pressure tested at OSU and repeatedly 
tested at SRNL.

• “Fabricate Multiple MATI devices”- Three MATI prototypes have been 
fabricated at OSU and we have parts for a fourth MATI.
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Remaining Challenges and Barriers

• Complete testing of conduction enhancements
• Complete model validation
• Complete final reporting
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Proposed FY 2016 Future Work

• This project is completed as of June 30th. No work is planned for FY 
2016.
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Collaboration

• Oregon State University is a member of the Hydrogen Storage 
Engineering Center of Excellence (HSECoE) collaborating with five 
federal laboratories, one university and six companies.

• Development of the Modular Adsorption Tank Insert Pressure Vessel is 
in collaboration with Hexagon Lincoln.

• Development of densified MOF-5 puck in collaboration with Ford and 
University of Michigan.

• Developed design of acceptance test apparatus and test plan in 
collaboration with SRNL.

• Developed simulation for code validation in collaboration with SRNL. 
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Technology Transfer Activities

• A invention disclosure for the MATI has been 
filed with OSU and is being evaluated
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Project Summary
• Relevance: The Modular Adsorption Tank Insert (MATI) can reduce size, weight and 

charging time of hydrogen storage.
• Approach: 

– Using simulation and previous experience from Phase 1 and 2, develop a design 
for the MATI that achieves the performance included in our first smart goal.

– Fabricate several MATI prototypes.
– Conduct performance testing at SRNL to demonstrate our second smart goal.
– Validate simulations against performance results.
– Test conduction enhanced pucks supplied by Ford

• Technical Accomplishments: 
– Completed assembly and pressure testing of three prototype MATI’s
 Two have been shipped to SRNL for performance testing;
 One is used at OSU for conduction enhancement;

– Conduction enhanced pucks have been designed and are being fabricated
– Completed assembly of OSU test apparatus for acceptance testing and testing 

of conduction enhancements
– With SRNL, completed modifications to simulation to allow model validation;

• Collaboration: Member of HSECoE team.
• Proposed Future Research:

– i) Complete tests with conduction enhanced pucks; ii)  Complete final reports 26
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Barriers A and E - Overall Integrated 
System Flow Sheet
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Barriers A and E - Integration with 
Monolithic Densified Media

MATI Cooling Plate (on 
top)

Compressed 
Monolithic 
MOF-5 Beds
3.0 cm between 
cooling plates

MATI 
Cooling 
Plates

Al Tank

Packed MOF-
5 pellets or 
particles 
required

Circumferentia
l  Cooling 
Tubes and Fins 
(1 cm fin 
spacing)

Circumferential 
Cooling tubes and Fins 

Axially aligned Fin and 
Tube

-Convenient Integration of  
Monolithic densified media
-95% densified media

-No known way to integrate 
monolithic densified media, 
requires pellets or powers
-60 to 80% media

-No known way to integrate 
monolithic densified media, 
requires pellets or powers
-60 to 80% media

Conclusion – MATI allow more media in a given volume than do 
finned tubes
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Barriers A and E - Simulation of Axial Fin tube for 
MOF-5 Adsorption (conducted by SRNL)

Modeling Assumptions
• Length of Cylinder = 0.75m
• Diameter = 3.635 cm
• 0.25 inch OD tubing

– Yields 2 cm of MOF surrounding the 
tubing

• 80 Aluminum axial fins
– 0.4 mm thick
– Yields approximately 1 cm spacing 

between plates.
– 8% of volume is metal or flow path

• Would require on the order of 60 
tubes with 120 welds

Results for H2 supply of 1.6g/s)
• Supply power of 3600 W is 

needed.
• H2 Max supply power (highest Δ

T  and flow rate) is 3000 W
• H2 supply power decreases to 

1000W during 1.25 hour 
desorption.

• Combustion of hydrogen must 
supply more 50% of discharge 
heat

OSU Conclusions  –
1) The performance of  the axial fin tube is seriously degraded by axial 

conduction this results in the axial fin tube requiring 50% of  discharge 
heating to come from hydrogen combustion as compared to 15% in 
MATI

2) 8% of  the volume is metal or flow path and is unavailable for media, in 
the MATI, 5% is metal or flow path

3) Would require 120 welded joints as compared to 30 in a MATI

Simulation of  Axial Fin Tube (SRNL)
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Barriers A and E - Conclusions

• We do not know of a method for integrating a densified monolithic media with 
either an axial fin or circumferential fins. The use of pellets and powers will result 
in a significant increase in volumetric density (i.e. a larger tank will be required 
for the same energy storage capacity)

• Based on the one design the center has produced for a MOF-5 fin-tube heat 
exchanger
o The performance of the axial fin tube is seriously degraded by axial conduction this results 

in the axial fin tube requiring 50% of discharge heating to come from hydrogen combustion 
as compared to 15% in MATI

o 8% of the volume is metal or flow path and is unavailable for media, in the MATI, 5% is metal 
or flow path

o This design would require 120 welded joints as compared to 30 in a MATI, however this 
depends on tank aspect ratio and a longer and more narrow tank would have fewer welded 
joints for the axial fin tube design and more for the MATI.

• Based on these results we do not plan on spending any additional time on 
evaluating fin tube heat exchanger for this application
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