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Overview

• Ardica (CRADA Partners)

• SRI

Start: 10/1/06
End: Continuing
Percent complete of activities 

proposed for FY15: 50%

A. System Weight and Volume

B. System Cost

C. Energy Efficiency

• Funding received in FY14

• $400K

• Funding to be received in FY15

• $400K 

Timeline

Budget

Barriers

Collaborators



Relevance: Alane as a Hydrogen Storage Material

• Develop a low-cost rechargeable hydrogen storage material with cyclic stability, 
favorable thermodynamics and kinetics fulfilling the DOE onboard hydrogen 
transportation goals. 

Specific Objectives

• Develop cheaper techniques to synthesize alane which avoids the chemical reaction route of 
AlH3 that leads to the formation of alkali halide salts such as LiCl or NaCl.

• Utilize efficient electrolytic methods to form AlH3.

• Develop crystallization methods to produce alane of the appropriate phase, crystal size and 
stability. 

Aluminum hydride (Alane - AlH3), having a gravimetric capacity of 10 
wt.% and volumetric capacity of 149 g/L H2 and a desorption 

temperature of ~60°C to 175°C (depending on particle size and the 
addition of catalysts) has potential to meet the 2020 DOE onboard 

system desorption targets

Overall Objectives
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Relevance: Advantages of Electrochemical Alane Generation

• Current alane production techniques use AlCl3 and 
LiAlH4 in a solution based chemical reaction which is 
costly due to LiCl formation which is not easily 
reversible. 

Current price $3,500/kg small scale

• Generating alane electrochemically allows for the 
exclusion of halide salts and simple aluminum 
recycling methods. 

−+ +++⇔ eLiHAlHLiAlH 234 2
1 SHE  vs.V 05.20 −=E

−+ +⇔+ eLiHHLi 22
1 SHE  vs.V 33.20 −=E

LiClAlHAlClLiAlH 343 334 +⇔+

422
3/ LiAlHHAlLiH ⇔++

Large scale production using electrochemical method expected to reduce cost below $100/kg

Hydrogen Cost in AlH3 $0.428 $/kg
Aluminum Cost in AlH3 $1.982 $/kg
E-Chem Thermo Cost $0.103 $/kg
E-Chem Kinetics Cost $0.096 $/kg
E-Chem Ohmic Cost $0.114 $/kg

Total E-Chem Cost from NAH $2.724 $/kg

Hydrogen Cost in AlH3 $0.428 $/kg
E-Chem Thermo Cost $0.103 $/kg
E-Chem Kinetics Cost $0.096 $/kg
E-Chem Ohmic Cost $0.114 $/kg

Total E-Chem Cost from NAH $0.742 $/kg

Aluminum not recycled

Aluminum recycled

Cost Analysis Including 
Inefficiencies
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Approach: Electrochemical Generation of Alane Adduct
• Producing alane directly from the 

elements requires impractical 
hydrogen pressure

• Electrochemical alane adduct 
production significantly reduces the 
cost of manufacture compared to 
chemical methods

• The cost of alane production can be 
significantly reduced due the 
recyclability of the materials by the 
electrochemical method

• Electrochemical alane production 
avoids the production of alkali halides 
which require large amounts of 
energy to reverse

Solid Adduct : AlH3•Diethyl Ether

Before Electrolysis After Electrolysis
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Approach: Crystallization of Alane Adduct to α-Alane

• Alane adduct can be crystallized by various methods. 
• The conditions used depend highly on the nature of the adduct ligand.
• Dry methods and solution based methods have been explored with the use of 

additives to assist in the formation of α-alane. 

6



Approach: Regeneration of Spent Alane to Electrolyte

High pressure Parr-reactor used for the regeneration 
of electrolyte.

2 LiH +    2 Alc*   +   3H2 → 2 LiAlH4 

(Alc* =  catalyzed and activated Al)

Regenerating LiAlH4 from dehydrogenated AlH3:

Yields above 80% have been 
achieved for both NaAlH4 and 

LiAlH4 regeneration. 

• Regeneration of the electrolyte 
from spent alane allows for the 
reversible production of alane.

• This regenerated electrolyte 
(LiAlH4 or NaAlH4) can then be 
used in the electrochemical cell to 
generate the alane adduct.  

7



Current Progress: Electrochemical Alane Production

Dendrite Reduction

Dendrites from typical 18 hour reaction. Dendrites from reverse pulsed 24 hour reaction. 

Dendrites were significantly reduced by 
utilizing a reverse pulse technique during the 

electrochemical reaction. • Dendrites pose problems for the 
large scale production of alane 
since they can grow to an extent 
where shorting out the cell is 
possible.

• The dendrites are composed of 
(Na/Li)3AlH6 and Al metal.

• The pulsing forms growth in a 
compact layer
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Current Progress: Crystallization of Alane Adduct
Methods for Crystallization

• Both chemical and electrochemical production techniques generate the alane 
adducted to various ligands.

• Crystallization to the right phase and crystal size is essential for stability of the 
material and hydrogen capacity and release temperatures. 

• The conversion of alane adduct to alane occurs in a very small temperature window 
(75 - 85 °C)

• The alpha phase with symmetrical crystals in the 4-50 µm range is most desired. 
• The dry method produces large crystals, but with little symmetry and aluminum.

α-alane crystals produced by the dry method. 
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Current Progress: Crystallization of Alane Adduct

• Solution based methods can produce the alpha prime 
(α’) phase of alane

• This phase is found to predominate when the 
crystallization temperature is below 76 °C or the rate 
of diethyl ether removal is too slow 

• While the alpha prime phase has a high hydrogen 
content, it’s stability is much less than that of α-alane

Identifying conditions to produce α-alane and avoid 
other phases using solution methods 

SEM image of α’ alane
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Current Progress: Crystallization of Alane Adduct

SEM image of Alpha Alane with residual gamma alane. 

• The appropriate time, temperature, and 
ether removal rate must be optimized to 
produce pure alpha alane. 

• Gamma alane will convert to alpha alane
with additional heating.
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Current Progress: Crystallization of Alane Adduct

• The alpha alane produced contained 9.2 
wt. % H2 as shown in the TGA/RGA.

• The crystals are of excellent symmetry 
and size.

• Further work to reduce the agglomeration 
of these alpha alane crystals is underway.  
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Current Progress: Recycling Spent Alane for Reuse 

SEM image of the inside of a spent alane pellet pressed at 3 tons. 

SEM image of the surface of a spent alane pellet pressed at 3 tons. 
Bright spots show electron build up (charging) which is indicated 

lower current flow (high resistivity). 

• Our collaborators (Ardica) are 
developing an electrochemical system 
that regenerates electrolyte in situ.

• Their system is based on an 
electrochemical flow cell approach. 

• Therefore, the use of spent alane for 
both electrodes would allow for in 
situ recyclability of spent alane.

• SRNL tested spent alane as 
electrodes in the production of alane

• Spent alane electrodes has a lower 
current. 

• This was due to insufficient electrical 
contact between the compressed 
spent alane particles.

• This can easily be avoided by using 
higher pressure for compaction or 
electrically conductive binders. 
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Collaborations and Team members

SRNL (TEAM)

Ragaiy Zidan

Patrick Ward

Scott Greenway

Scott McWhorter

Joseph Teprovich

Ted Motyka 

Ardica (POC) Dick Martin

SRI (POCs)
Robert Wilson

Mark Petrie
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Remaining Challenges and Barriers

• Improve the conductivity of the electrolyte solution 
to increase the rate of alane production

• Eliminate the dendrite formation on the surface of 
the electrolyte

• Optimize the crystallization parameters for the large 
scale production of alpha alane
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Future Work: Electrochemical Production of Alane

• Insulate the electrode at the surface of the electrolyte 
solution to prevent dendrite formation at the location during 
the reverse pulse method 

• Increase conductivity by reducing the distance between the 
electrodes once dendrites have be eliminated

• Develop efficient method for the crystallization of the alane 
THF adduct, so THF can be used as the solvent (higher 
conductivity than Diethyl Ether)

• Explore additives to the electrochemical cell which can 
increase the conductivity
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Future Work: Crystallization 

• Develop techniques for the crystallization alane THF adduct 
with appropriate phase (α) and particle size

• Ensure current technique for the crystallization of alane 
diethyl ether adduct is reproducible on a larger scale 

• Optimize the crystallization technique with toluene instead 
of benzene to improve commercial production opportunities
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Summary

• Dendrites formed during the electrochemical generation of 
alane have been significantly reduced and a method for 
removal along the electrolyte surface has been identified.

• Crystallization of alane adduct to alpha alane with 
appropriate particle sizes has been accomplished. 

• Regeneration of spent aluminum to the electrolyte has been 
achieved in high yields as reported previously.

• Feasibility of using spent alane as electrode in the 
electrochemical cell has been investigated.
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