Thermomechanical Cycling of Thin Liner High Fiber Fraction Cryogenic Pressure Vessels Rapidly Refueled by LH₂ pump to 700 bar

> Salvador Aceves (PI), Gene Berry, Guillaume Petitpas (presenter), Vernon Switzer

> > LLNL-PRES-670055

Annual Merit Review 2015, Arlington (VA) June 10th, 2015

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Overview

Timeline and Budget

- Start date: January 2014
- End date: December 2016
- Total project budget: \$5.45M
- Total recipient share: \$1.5M
- Total federal share: \$3.95M
- Total DOE funds spent: \$1.8M*

*As of 3/31/15

Funded jointly by Technology Validation, Storage, and Delivery

Barriers

- A. System Weight & Volume
- D. Durability/Operability
- N. Hydrogen Venting

Partners

- Linde: LH₂ pump operation & maintenance, LH₂ delivery (~50 tankers)
- BMW: 350 bar cryogenic H₂ testing, system geometry, automaker perspectives
- Spencer Composites: design & build of 6 thin liner cryogenic prototype vessels

Cryogenic H₂ offers rapidly refueled onboard storage with volume, capacity, & safety advantages that outweigh technical challenges

- High density (cold) H₂ allows minimum vessel volume, mass, & cost with rapid refueling
- Larger capacities improve cryogenic valve/vacuum jacket cost, mass, & volume per kg of H₂
- Inert secondary containment, min burst energy @ max tension, on road safety factor of 5-10

7 minute 10 kgH₂ fill to 70 g/L (350 bar, 65 K)

- Compact vacuum jacket necessary for system density
- Thermal isolation (parking) vs. suspension strength (acceleration)
- Temperature variations alter material properties, density, dormancy, H₂ burst energy

We will demonstrate a 5 kg H₂ system at 700 bar with 9+ wt% & 50 g/L

Volumetric efficiency improves system tradeoffs (pressure, dormancy, capacity & cost). Our objective is to explore thermomechanical limits of 12 inch vessels designed specifically for cryogenic H₂ storage

9 mm Al liner Inner volume = 163 L Outer volume = 233 L 163 L / 233 L = 70 % volumetric efficiency 1.8 mm non-Al liner Inner volume = 65 L Outer volume = 80.36 L 65 L / 80.36 L = *80.9 % volumetric efficiency*

Ultra Thin liner (1.3-1.5 mm): necessary for small diameters **Non-Al liner**: liner, piping, and weld durability under cryogenic H₂ cycling **Maximum fiber fraction**: minimum wall volume & thermal inertia

We are demonstrating 700 bar prototype cryogenic vessels with a minimum 80% volumetric efficiency

Approach : Test cryogenic H_2 durability of four (65 L) prototype vessels before building a 5 kg 700 bar CcH₂ system demonstrating 50 gH₂/L

Phase 1 (proof-of-concept)

- Install instrumentation to determine LH₂ pump power, outlet temperature, & boil-off
- Safety plan for cryogenic H₂ cycling facility rated for 5kg H₂ prototype vessels
- 1600 bar cryogenic (LN₂) strength test of <u>initial</u> prototype design (2.28 safety factor)
- Fabricate 700 bar 163 L system using commercial vessel to test insulation & supports

<u>Phase 2 (durability)</u>

- Install containment for 1300 bar 160 Kelvin H₂ burst and 700 bar cycling to 300 Kelvin
- 1500 refuelings & cryogenic H_2 strength test (1.85 safety factor EOL) of <u>two</u> vessels
- Initial 700 bar characterization of LH₂ pump (peak density, kWh/kg, boil-off)

Phase 3 (demonstration)

- Aggressively cycle then strength test <u>two</u> higher performance vessels
- Select and install final vessel design in lightweight compact vacuum jacket
- Performance demonstration (volume, peak H₂ density, dormancy, vacuum stability)
- Compare for any LH₂ pump degradation after 6,000 refuelings to 700 bar

Phase 1 go/no-go successfully completed Phase 2 go/no-go in winter 2015

Accomplishments : Boil-off flow meter installed on 3000 gallon Dewar

Directly measuring evaporation is more accurate than inferred evaporation from LH₂ level changes

Accomplishments : Boil-off flow meter installed on 3000 gallon Dewar

Accomplishments : LH₂ pump has been instrumented (outlet temperature, electricity usage) to evaluate performance degradation

Boil-off, electricity consumption and pump outlet temperature will be measured over $6,000 \text{ H}_2$ refuelings (prototype cycling in phases 2 & 3)

Accomplishments: Site construction & control room for cryogenic H_2 cycling within 2.8 m³, 65 bar containment using 875 bar LH₂ pump

Civil site construction for test facility was completed in early 2015 Containment, LH₂ lines etc., and heat exchanger to follow in FY15 Accomplishments : LLNL safety approval of 65 bar containment required transient H₂ peak pressure & dynamic vessel wall loading analyses for 2.5-5 kgH₂ over the full pressure and temperature range

1300 bar 5 kg cryogenic H₂ burst is worst case scenario (P_{wall}=115 bar) 700 bar 2.5 kg H₂ burst during 300 K cycling is lower (P_{wall}< 100 bar)

LH₂ cycling facility with 1 m dia. containment & 40 kW heat exchanger for 2.5-5 kg 700 bar prototype vessel testing, remotely operated

1 m diameter 65 bar containment, Class 1 Div. 1 power and controls, 25 ft. exclusion zone & remote operation are used to mitigate H₂ risk

Accomplishments: 100+ page DOE safety plan submitted for 800 kg LH₂ testing facility. Visit by DOE H₂ Safety Panel in August 2014

Comprehensive plan includes key aspects of safe operation

- Failure Mode and Effect Analysis
- Piping and Instrumentation Diagram
- Site layout
- Safety distances for H₂
- Design Calculations
- Components specifications

Safety plan was very well received by DOE hydrogen safety panel

 Requested authorization to use as an example of completeness and thoroughness

Internal LLNL safety plan for ASME 65 bar containment submitted and approved

Accomplishments : Cryogenic strength test of 65 L prototype with 81% volumetric efficiency burst at 1560 bar

Accomplishments : Crvogenic strength test of 65 L prototype w <u>Phase 1 go/no-go :</u> ar 1,600 Cryogenic N₂ strength test of full scale 700 bar prototype vessel

	vessel ID	Volume Efficiency	Inner Volume	Outer Volume	Vessel Wall	% of goal	Minimum Cryogenic Strength	% of goal
Target	12"	80.0 %	65 L	81.25 L	16.25 L	100 %	1600 bar	100 %
Result	12"	80.9 %	65 L	80.36 L	15.36 L	105 %	1560 bar*	97.5 %

*following 2 pressure spikes to 1500 bar

Phase 1 go/no-go completed in Feb 2015

26.5 127.5 128.5 129.5 130.5 131.5 Minutes since 50 kg LN₂ (77K, 1 atm) fill

Responses to Reviewers' comments

Project not reviewed last year

Collaborations with Industry Leaders

- Linde: Very cooperative, sharing detailed information throughout pump development, construction, and installation. Interpreting and sharing data from multiple pumps. LH₂ handler's perspective on testing facility design. Will provide 50 LH₂ tanker deliveries over project duration.
- BMW: Automotive LH₂ experience. Extensive 350 bar system design and subscale cycling. Safety validation of commercial vessels. Guidance on storage geometry, use cases, cycling design. Monthly phone meetings discussing thin liner potential, vacuum stability, LH₂ pump operation and performance comparisons.
- Spencer Composites (Sacramento, CA): Long expertise in custom composite vessel development. Very close collaboration on component testing, first 700 bar thin liner vessel design & build. Will build 6 custom prototypes during the project.

Remaining Challenges and Barriers for FY16 milestones

• Cycling efficiency and logistics

- Challenge: Warm cycles dominate calendar time (due to warmup time to room temperature) and increase LH₂ pump boil-off substantially
- Solutions : Shift mix of warm cycles toward empty (instead of full), 7 day/week operation, approval for alternating cycling of 2 prototypes in one containment, coordinate LH₂ delivery to support operation with 2 test vessels

• Test facility

- Challenge: Peak H₂ density at 700 bar estimated at 80 g/L (4.2 kg H₂ per cycle), from 350 bar data using short 10 ft vacuum jacketed hose. 100 ft high pressure line could increase cryogenic H₂ fill temperature
- Solutions : Consider purging line before cold fill and/or vacuum jacket high pressure H₂ line (challenging due to high pressure ratings)

Challenges will be better understood once cycling has begun. Cycling procedure and objectives can then be refined.

Proposed Future Work

Future work includes:

- Installation of containment, vent stack, and heat exchanger
- Manufacture and cycle testing of 4 thin-lined full scale 700 bar vessels
- Test LH₂ pump degradation over 6,000 refuelings (~24 tonnes LH₂)

Date	Description
03 /2015 Postponed	Determine pump performance at 700 bar using 163 L conventional vessel (40 gH_2/L_{sys} , 6 wt% H_2) Postponed
07/2015	First operation of LH ₂ pump to 700 bar with one 65 L prototype <i>Pursue LLNL safety approval for 2 test vessels operation</i>
10/2015 Go/No-Go	Complete 1,500 thermomechanical cycles on one 65 L 700 bar prototype with > 80% volumetric efficiency. Pass 1300 bar H ₂ cryogenic strength test.
01/2016	Complete 1,500 thermomechanical cycles on second 65 L 700 bar prototype. <i>May be done earlier if alternate cycling approved & 2 LH₂ deliveries/week.</i>
02/2016	Begin accelerated cycling of 3 rd 65 L prototype vessel using heat exchanger

Second Go/No-Go (winter 2015): Successful cryogenic 1300 bar strength test of *at least one* prototype vessel after 1,500 thermomechanical cycles

Future Work : Cryogenic H_2 cycling will cover the full pressure & temperature range, emphasizing maximum thermomechanical stress

Future Work : cryogenic cycling and strength testing of 4 prototypes will be conducted in 2 phases to determine final demo vessel design

Temperature Variation and Non-Uniformity

Passive (external) Warming

Active (internal) Warming

1500 cryogenic fills (25 from 300 K) 1100 cryogenic fills400 warm fills(25 from 300 K)(200 from 20 K)(175 from 270 K)(200 from 80 K)

Goal: 50 days @ 700 bar (25 days <200 K)

2015: most aggressive and conservative designs tested early 2016: diversify heat transfer and temperature of pressure cycles

In the event the most aggressive design fails, we will then test an alternate (thicker) liner with conventional cryogenic epoxy

Temperature Variation and Non-Uniformity

Passive (external) Warming

Active (internal) Warming

1500 cryogenic fills (25 from 300 K) 1100 cryogenic fills400 warm fills(25 from 300 K)(200 from 20 K)(175 from 270 K)(200 from 80 K)

Goal: 50 days @ 700 bar (25 days <200 K)

If all vessels succeed, 2 liner materials will be proven. Otherwise, alternate liner will have been cycled using 2 different resins₂₁

A 700 bar large (163 L, 23 inch diameter) commercial pressure vessel will be vacuum jacketed to test compact support & insulation designs

We plan to test compact supports and insulation for a minimum vacuum gap design using an existing 700 bar commercial vessel. The large capacity (163 L) and DOT rating for manned operation will enable precise heat transfer measurements for mechanism determination.

Long lead time components have been acquired but we are considering delaying this task until the phase 2 go/no milestone is successfully completed. This will still provide adequate time for results before the final demonstration system design is complete.

Once complete, this system will also be ideal for high resolution LH₂ pump performance characterization, particularly in the two-phase region with continuous weight measurements and external temperature control as future options.

This task was originally planned in phase 1 but was reduced in priority relative to safety plan and 1st prototype fabrication. We are now considering fabrication early in phase 3.

A 5 kg H₂ 700 bar demonstration system will be built based on the best prototype vessel design & fully characterized in the LH₂ cycling facility

- Comprehensive refueling map (capacity vs. initial refuel condition) with 20-30 refuelings
- Determine system mass and external volume, with some allowance for instrumentation
- Continuous vessel and jacket temperature measurements
- Dormancy measurements and heat transfer estimates for 5 capacities and 3 temperatures
- Continuous vacuum monitoring over ~ 2 months

Projected demo system specifications (65 L)Outer Diameter: < 14"</td>Weight (full): 40 to 60 kgLength : < 45 "</td>Dormancy: 4-8 days at 90% fullJacket volume : < 100 L</td>

Our projected system density is based on LH_2 pump refuel densities extrapolated from 350 bar to 700 bar (80 gH₂/L, 80 Kelvin)

Technology transfer activities: technology jointly developed with BMW and Spencer composites Corporation

- **BMW CRADA signed July 2014:** Includes \$1M cost share
- Two recent patents:
- Weisberg AH. Methods for tape fabrication of continuous filament composite parts and articles of manufacture thereof. United States Patent US 8545657 B2, November 2013.
- Espinosa-Loza, F, Ross, TO, Switzer, V., Aceves, SM, Killingsworth, NJ, Ledesma-Orozco, E, **Threaded Insert for Compact Cryogenic Capable Pressure Vessels**, Granted March 12, 2015.
- A provisional patent and two records of invention

Summary: LLNL will demonstrate cryogenic durability of 12" thin liner vessels over 1500 refuelings, achieving 50 gH₂/L_{svs} & 9 wt% H₂

- RelevanceLH2 pump can rapidly and consistently refuel cryogenic H2 onboard
storage to 700 bar, with potential to exceed weight & volume DOE
targets with substantial dormancy improvement for modest cost,
with ideal scalability.
- ApproachDetermine cryogenic durability of 4 full scale 65 L thin liner 700 bar
composite prototypes with maximum volumetric efficiency at 12"
diameter. Demonstrate system volume, weight, dormancy and
vacuum stability at 5 kg H2 capacity.
- FY15 ProgressCivil construction for cryogenic H2 cycling facility completed
Conducted safety analysis, obtained LLNL approval
Manufactured 700 bar thin-lined vessel with 81% vol. efficiency
Demonstrated 1560 bar cryogenic strength of prototype vessel
- Future workComplete H2 cycling facility (1300 bar cryogenic burst containment)
Cycle 4 vessels: 2 with external warming, 2 using heat exchanger
Demonstrate minimum 1.85 EOL safety factor on up to 4 vessels
Build & evaluate performance of 5 kg H2 demo system
Measure pump degradation over life of project