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Overview

Timeline Barriers addressed
Project start date: 06/30/2014 * Lack of understanding of hydrogen
Project end date: 06/30/2017 chemisorption (Barrier O)

« System weight (Barrier A)
» Charge/discharge rate (Barrier E)

Budget Team

Project Lead:
Lawrence Livermore National Laboratory

Total project budget: $1.2M
Total federal share: $1.2M

Funded Partners:
Sandia National Laboratories
University of Michigan

Total received: $200K (FY14),
$400K (FY15)

Total funds spent (as of 3/15):
$275K
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Relevance

Light-metal hydrides such as Mg(BH,), are attractive candidates for compact, lightweight, and safe

hydrogen storage tanks for fuel cell vehicles, but they absorb and release hydrogen too slowly

Project objectives: )
Combine theory, synthesis, and characterization techniques at multiple length/time scales to understand
kinetic limitations and possible improvement strategies in Mg(BH,), with relevance to light-metal hydrides
Deliver a flexible, validated, multiscale theoretical model of (de)hydrogenation kinetics in “real” Mg-B-H
materials, and use predictions to develop a practical material that satisfies 2020 onboard H, storage targets

/
. . . \ Gravimetric M BH
Current project year objectives: Fue density 9 | 4>
impurilii((aes) V((legrr]r;iettrlc
»  Synthesize & characterize high-purity MgB, and Mg(BH,), !
materials
»  Measure hydrogenation kinetics of bulk MgB, ”ﬁierﬁ';?fgez / de'\l’i”vr;ry
« Establish & calibrate initial modeling framework, and test \ g%%i“rg
computational feasibility
j Min. flow rate Cycle life
@85° C

adapted from: L.E. Klebanoff and J.O. Keller, IJHE 38 (2013) 4533-4576
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Approach: Integrated multiscale experiment-theory framework

Predictive Theory Controlled
(multiscale simulation) Synthesis & Testing
e (size-selected nanoparticles)

Advanced.Characterization
v
(microscopy and spectroscopy)

Tightly integrated theory-synthesis-characterization effort focuses on scalable, cost-effective optimization
by reducing particle size or using metal additives

Multiscale modeling of diverse chemical processes during hydrogen uptake and release in Mg(BH,),
particles using state-of-the-art supercomputing facilities at LLNL

Novel synthesis & characterization approach for directly informing, vallidating, and verifying predictions
using advanced experimental capabilities at Sandia and LBNL

Addresses challenges of “real” materials beyond idealized theoretical descriptions
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Approach: Controlled synthetic routes to kinetic improvement

Dehydrogenation kinetics are poor, but there are consistent reports of pathways to improvement via
chemical and structural changes in metal hydrides. We focus on two routes:

Mg(BH,),: M. Fichtner et al., Nanotechnology 20, 204029 (2009)

NaAlH,: T. Mueller and G. Ceder, ACS Nano 4, 5647 (2010) ; V.
Stavila et al., ACS Nano 6, 9807 (2012)

LiNH,: N. Poonyayant et al., manuscript in preparation

LiBH,: X. Liu et al., J. Phys. Chem. C 114, 14036 (2010)

Nanosizing

Mg(BH,),: Newhouse et al., J. Phys. Chem. C 114, 3224 (2010)
NaAlH,: Bogdanovic & Schwickardi., J. Alloys Compd. 253, 1 (1997)

Catalytic
Doping

NaBH,. D. Hua et al., Int. J. Hydrogen Energy 28, 1095 (2003)
H,NBH,: T. He et al., Chem. Mater. 21, 2315 (2009)

LiNH,. T. Ichikawa et al., J. Alloys Compd. 365, 271 (2004)

Our project is built around understanding and leveraging these
Strategies for improvement: how, why, and when can they help?
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Approach: Model diverse H, storage physical processes

Combined DFT (nanoscale) + phase-field (mesoscale) modeling framework goes beyond bulk
thermodynamic properties to include surface and interface effects under non-equilibrium
(de)hydrogenation conditions

Surface reactions H, environment

(Adsorption/desorption)
Dissociation/: ati :
(Dissociation/association) Surfacefinterface

Particle-particle diffusion

interaction

Bulk diffusion Phase nucleation &

evolution at solid-solid
Storage medium interfaces

Leverages prior LLNL LDRD investment in optimized mesoscale methodologies and codes
developed for leadership-class supercomputers
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Approach: Multiscale characterization and modeling
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Y1 milestones and key technical accomplishments

Synthesized high-purity MgB, and Mg(BH,), materials
 Performed first measurements of bulk MgB, hydrogenation kinetics
 Preliminary spectroscopy of pristine and partially hydrogenated bulk MgB,

 Established initial modeling framework to predict phase fractions, accounting for:

» Thermodynamics of interfaces, surfaces, and bulk
» Elastic effects and mechanical stress/strain
» Phase nucleation/evolution and nonequilbrium (de)hydrogenation

» Established platform for simple integration of first-principles thermodynamic data into
phase-fraction code

« Initial calculations of equilibrium thermodynamic parameters for bulk MgB,-Mg(BH,),
« Tested computational feasibility of codes on LLNL supercomputers

« Tested theoretical predictive capability using Li-N-H system; successfully explained
observed changes in reaction pathways with nanoconfinement

* Met all key milestones for Y1
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Accomplishment: Synthesized high-purity MgB, and Mg(BH,),

Very pure samples of Mg(BH,), and MgB, are needed for the experiments

MgB,

Counts

60000 Exp. MgB,, commercial product
* crystalline boron impurity

40000

20000
. ok x A N A

0
60000 Exp. MgB,, Sandia material

40000

o N

0 L A h_h A
5 Calc. MgB,, P6/mmm
(=]
5000 =
E o - o
g J g TRz g8 & b=
o™
L5 l S WO
20 30 40 50 60 70 80

Position [*2Theta] (Copper (Cu))

We developed a synthetic approach utilizing
the reaction of excess Mg with boron to isolate
phase-pure MgB, with no impurities

30000

20000

20000

Mg(BH,),

Counts

Mg(BH,)2(Me,S),

100004

Mg(BH,)z, Exp.

10000

.V

£ Mg(BH,),, la-3d, Calc.

50004

Position [*2Theta] (Copper (Cu))

Pure a-Mg(BH,), was synthesized using
reaction of MgBt, with BH;-SMe, in heptane,
followed by mild heating in vacuum
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Accomplishment: Measured initial bulk MgB, hydrogenation rate

105 bar H,, 380 °C 145 bar H,, 364, 378 and 391 °C
1 1.1
0.9 ] <€ 1
T — o T | 0.9
07 | . 0.8
© c 07
S 0] ué) 0-6
2 05 0.002 wt.%/hr - 5 391¢C
Loay 4 g & > 378C
= { T 04 | S &
03 | A4 \ | o - 364C
| 0.3 &%
°2 ] 0 | 02 | [
14 0.02 wt.%/hr -
0114 ' 0.1 489
o777 O\\\\|||\\\\IIII\‘\II'I‘\
0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120
Time, hours Time, hours
~ 39 mole % of MgB, sample has reacted to form Temperature-dependent hydrogenation studies will
MgB,-H, identification of products in progress allow for extraction of activation energies, for

comparison with theory

« Initial bulk hydrogenation rate ~ 0.02 wt.%/hr, followed by a slower ~ 0.002 wt.%/hr.,
suggestive of multiple-barrier processes
« Determination of initial bulk MgB, hydrogenation activation energies is in progress
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Accomplishment: XES/XAS at the Advanced Light Source (LBNL)

X-ray Emission Spectroscopy (XES) and X-ray Absorption Spectroscopy (XAS)
enable element-specific tracking of the course of hydrogen storage reactions

Soft X-ray Emission X-ray Absorption
(SXE) spectroscopy Spectroscopy (XAS)
Band Gap (BG) i
e .
SXE XAS
I - o< e - I' i I‘ Valence
1.11/,‘\111“\1vL Energy ) : Orbitals
—— mm“ cor
Measurement of the occupied DOS » Element-specific technique
Resolve structure of filled electronic * Angular momentum-resolved probe
density of states states of the unoccupied electronic DOS
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Accomplishment: X-ray spectroscopy of MgB,-H

Spectroscopy shows that wholesale changes to the MgB, electronic structure
at the B site are being made with H addition throughout the sample

| [~ MgB, Dehydrogenated] !
—— MgB, Hydrogenated hv =210 eV,
—— MgB; AsPrepared XES
]
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produces undetectable oxidation
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Little change occurring at
at Mg with H addition

DFT simulations of
XES, XAS data will
determine unique
signatures of B-H,
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Accomplishment: Collaboration, data management, and data sharing

Established platform for collaboration, data management, and
data sharing using online and open-source tools

Created online repository for data and literature compilation using Google tools

Developed subroutines for DFT calculation of surface/bulk energetics, zero-point energies,
bulk/surface vibrational entropies, and elastic moduli with a high level of automation

DFT-derived thermodynamic data is collected into shared, interactive Google spreadsheet that
automatically fits & extracts thermodynamic parameters for any temperature, pressure, and
particle size to efficiently inform mesoscale simulations
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Accomplishment: Framework for phase-fraction prediction

Established theoretical framework for predicting equilibrium phase fractions from
DFT thermodynamics as function of temperature, pressure, and particle size

Phase fraction code

DEITE thermodynamlcs

OQ)O

> ARG
CRABH RO
Oy b(@()n) )
OHHIOO

eta: 800%03 0 gam
<* X1,X2,X3 0000E: aa a se 6 -02 0.6612466 0.3224932
LS

Bulk, surface,
and interfacial
free energies

Phase fractions asLlN _
functlon of T, P, Slze‘NH ]

HLINH |

* New theoretical methodology for phase-fraction
prediction incorporates bulk, surface, and interfacial
DFT thermodynamics (obtained from the interactive
spreadsheet), plus thermodynamics of mixing

T
40 50
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Accomplishment: Thermodynamic parameters for Mg(BH,),/MgB,

Calculations of DFT thermodynamic parameters for Mg(BH,),/ MgB,
(in progress)

 Working on DFT calculations of
thermodynamic parameters
(“standard” parameters, plus
surface energy/entropy and elastic
moduli)

 Benchmarking against available
values obtained by Wolverton and
Ozolins*

Key challenges are surmountable, but carry high computational cost:

 Multiple possible intermediates and surfaces to examine
« Large unit cells with many internal degrees of freedom

*see 2013 & 2014 Annual Reports for DOE Hydrogen
. . 15
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Accomplishment: Early learning/feedback for modeling framework

Tested models and obtained key insights by studying Li-N-H system

« What determines kinetic improvement with nanosizing? (‘Q%@
O ¢

- What is the role of surfaces and interfaces in determining YO Q
H, storage reaction pathways and kinetics? @b C§I 69

B-LisN

= Examined recent SNL data* on Li-N-H system [Li;N/(LiNH,+2LiH)] confined
in 3.2 nm nanoporous carbon (npC) to quickly build needed capability and validate
modeling framework. [Li;N/(LiINH,+2LiH)] @ npC:

 Exhibits new reaction pathway and kinetic improvement with nanosizing

 Well-characterized system (XRD, Sieverts, NVE [collaboration w/ T. Udovic, NIST])
with demonstrated reversibility

/
Bulk: - Nanoconfined (3.2 nm):
a-Li;N + H, — Li,NH + LiH | | |
Li,NH + LiH +H, — LiNH,+2LiH  B-LisN + 2H, — LiNH, + 2LiH

Multi-ste One-ste
N P P Y,

*Performed under Sandia/Boeing CRADA; with J. Breit (Boeing) and N.

Poonyayant, N. Angboonpong and P. Pakawatpanurut (Mahidol University, L 16
Thailand). Manuscripts in preparation. DOE Hydrogen Program Annual Merit Review




Accomplishment: Predict & explain different phase pathways in nano-Li;N

Possible internal phase Models show interfacial effects drive single-
configurations in a particle . .
stage hydrogenation of nano-Li;N

Reaction
2 step: Li,N+2H, <> Li,NH+LiH+H, <> LiNH,+2LiH
1 step: Li?’N+2H2 < > LiNI‘I2 +2LiH

Y

Opens the door to possibility of optimizing reaction pathways
through particle morphology and microstructure

2 ‘ f 7 T ¥ f ? f
—LiN |\ |ntermediate Li,NH phase |—LiN
= L1,NH I - = L1,NH
—1i |1 b vanishesbelow R=5nm | g |
—.LiNH,| | ) —.LiNH,| |
8 3
= ©
= p=
' R =50nm | R=5nm |
s (e % i 30 i 5 5 iy 30
PH2 (atm) PH2 (atm)
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Accomplishment: Predict & explain different phase pathways in nano-Li;N

Models also successfully predict a — 8 conversion for nano-LisN,
which is primarily driven by surface energy differences

i O alpha-Li3N+2H2
< N O beta-Li3N+2H2
Qo 1.5 - O Li2ZNH+LiH+H2
= i O LiNH2+2LiH
S B a — [ crossover
® _~ i below ~6 nm
S I B
L p—
58 [
gs |
o i
o .- N jg
5: g) 05 I
= O B
g2
0 |
2 o Li,NH
(_U -
&) i —O |LiH+LiNH,
‘ N SO
05 O 0°0gP K0 0°
i L L L L ] L L L L ] L L L L ] L L L L ] L L L L ] L L Od Q + )@JOE@UOO
Oa® P07,
5 10 15 20 25 E S A A

Particle diameter (nm)
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Accomplishment: Implementation of additional kinetic driving forces in code

Developing and implementing formalism for elastic (mechanical), phase
nucleation/polycrystallinity, and nonequilbrium (de)hydrogenation in mesoscale
kinetics code (in progress)

Intermediate

Intermediate
phase 2

Elastic effects (stress/strain)

1901 0-20 o

time —>

phase 1 Initial phase
\_ J/
-1___Phase nucleation/polycrstallinity ~—— Nonequilibrium (de)hydrogenation |——
02 I T ‘ | | -
2 <H composition near a surface>
=
% 0.15 w8
E\ an
.
@] a8
o
8 0.1 a5
E o
= m
% 0.05 0 Particle
= — Single crystal v
>O — Polycrystal -
0 ! ‘ ! ‘ ! ! N\
200 400 600 800 1000
Time step
\- J
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Collaborations

Collaborations are crucial for realizing theory/characterization/synthesis partnership

Ab initio modeling/multiscale integration Nanoparticle synthesis & testing

i i
LLg Dr. Brandon Wood n | i Dr. Vitalie Stavila
(PI, LLNL)* (Sandia)**
] .
L2 Dr. Keith Ray Characterization
(LLNL)*

,11 Dr. Lennie Klebanoff

Mesoscale phase-field modeling

(Sandia)**
I Prof. Katsuyo Trlczrnton m Dr. Jonathan Lee
(Univ. Michigan) (LLNL)*

Ltg Dr. Tae Wook Heo
(LLNL)*

External & ongoing collaborations
» Neutron diffraction/spectroscopy: T. Udovic (NIST; within DOE Hydrogen Program)

« XAS/XES spectroscopy & modeling: D. Prendergast, Jinghua Guo (LBNL; DOE User Facility)

» Li-N-H system: J. Breit (Boeing); N. Poonyayant, N. Angboonpong, and P. Pakawatpanurut
(Mahidol University, Thailand)

+ Kinetic Monte-Carlo for solid-state diffusion: H. Kreuzer (Dalhousie U.), S. Bonev (LLNL)

. 20
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Remaining challenges/barriers & proposed mitigation strategies

Need better understanding of intermediate phases and local chemistry to inform models
 Increased proposed characterization activity in FY15 & FY16, including new tasks for theoretical
simulation and interpretation of spectra

Limited beamtime at ALS and NIST characterization facilities
» Planning schedule and preparing samples to coincide with beamtime
 Plan to submit user facility proposal to ALS in Fall 2015

Slow hydrogenation kinetics limits data collection
* Inform models with existing data and on other materials in the meantime (e.g., Li;N)

Need techniques to bridge time scales associated with kinetic processes (e.g., diffusion)
» Leveraging internal LLNL LDRD funding and existing external collaborations to develop new methods and
techniques, including grain boundary/amorphous transport

Need to adapt modeling formalism to address surface reactions (dissocation/association

and adsorption/desorption)
» Added task to test new ideas; currently working on implementation and testing

Phase transformation pathway for Mg(BH,), may be very complex
» Developing multi-phase framework; may require careful identification of rate-limiting intermediates

21
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Proposed future work: FY15 & FY16

Milestone Description Proposed
completion
1 Refine size-selective synthesis of MgB,/Mg(BH,), nanoparticles Q3 FY15
2 Complete study of Li-N-H and submit manuscripts for publication Q3 FY15
3 Complete experimental H, uptake/release kinetics measurements for bulk Q4 FY15
MgB,/Mg(BH,), as function of temperature and pressure
4 Complete XAS/XES spectrscopy for MgB,/Mg(BH,), and perform first- Q4 FY15
principles simulations of B/Mg-edge XAS/XES spectra for interpretation
5 Establish modeling framework for surface chemical reactions Q1 FY16
(dissociation/association and desorption/adsorption of H,)
6 Compute DFT thermodynamic parameters for MgB,/Mg(BH,),/MgB,H;., Q2 FY16

including surfaces and interfaces

7 Use models to predict bulk and nanoscale phase pathways (neglecting Q3 FY16
transport) and compare kinetics with available experimental data

8 Transport calculations (bulk, surface, intermediates, defects) Q4 FY16

22
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Technology transfer activities

« Viktor Balema (Sigma-Aldrich) is kept informed of our research progress,
which will foster commercialization of viable new materials

23
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Summary

Key Concepts:

* Integrated theory/synthesis/characterization framework aims to understand and improve kinetics of
Mg(BH,), and related metal hydrides by exploring nanostructuring and doping

* Understanding kinetic limitations & enhancement mechanisms could lead to Mg(BH,), particles with
optimized geometry and composition

« Early learning on Li-N-H system demonstrates the need to consider interfaces, and suggests the
possibility of morphology/microstructure engineering as a viable strategy for kinetic improvement

Technology summary:

* Multiscale modeling of kinetics and reaction pathways for bulk and nanoparticle Mg(BH,), <
MgB, + 4H, interconversions, including interfacial, surface, and bulk energy/entropy contributions

» Complete synthesis & characterization approach directly informs and validates theoretical models
with respect to reaction pathways, intermediates, kinetics

Impact:

» Goes beyond thermodynamics to directly target kinetics in a comprehensive way and address
challenges of “real” materials

* Focuses on material with potential to meet 2020 DOE hydrogen storage targets

* Flexible modeling and synthesis frameworks can be easily applied to other candidates, ties into
Presidential Materials Genome Initiative for accelerated materials discovery & design

24
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Technical backup slide: Laboratory upgrades at Sandia

Sandia Does Not Provide Cost Share, But.......

Sandia began the project by installing significant laboratory upgrades, without
expenditure of project funds, courtesy of other Sandia mission areas:

1. New Ar Glovebox with exceptionally low (0.5 ppm) oxygen, which will be dedicated
to this work.

2. New FTIR instrument installed in the Glovebox and used for characterizing
intermediates in the hydrogen storage reactions of the Mg-B-H system.

28
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Technical backup slide: Demonstrated MgB, nanoparticle synthesis

We have already demonstrated the feasibility of using surfactant-assisted
ball milling* to produce nanoscale MgB,. Producing variable size-selected
nanoparticulate MgB, should be straightforward.

MgB, NPs (5- 10
nm) synthesized
at Sandia: 86%
yield, with 2 ¢
suspended in 10
ml of heptane

*Y. Wang et al., Nanotechnology 18, 465701 (2007)

29
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Technical backup slide: Phase fraction calculation

Possible internal phase | Reaction
configurations in a particle

(-a)-[LiN+2H,| <> B-[Li, NH+LiH+H,| <> y-|LiNH, +2LiH]

\
<Total Gibbs free energy of the system>
G=(m +p+2y)-g(B.y, 1)+ (ny — B-27)-8(B.7, Py, T)

We find the 3 and y (phase fractions) that minimize
the above expression for the free energy:

G =min(G)

\_ J
Molar Gibbs free energy of a solid phase (Ideal mixture of 4 components)
~~~~~~~~~ Surfacelmterface contribution

=1

Ao
___________
-
~~ao
~~

*A Computed by DFT calculations
Molar Gibbs free energy of a gas- rfhase (Pure ideal H, at pressure Py,)

-
——— Rag
R S -
S -
-
-
-
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Technical backup slide: General framework of phase-field modeling

Mathematical modeling

F=]dvif(nX,.)+
(gradient energy)+

(long-range interactions)+...]

e at describe
continuous evolution of a given property

across a solid-solid phase boundary (can

represent non-conserved or conserved Numerically solving

quantities) Governing equations

on(r,t) OoF : Allen-Cahn equation
Kinetic Phase or —L 5_77 (Non-conserved field)
Microstructure evolution _ _
oX(r,t) _ AR OF | : cahn-Hilliard equation
ot X (Conserved field)
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Technical backup slide: Surface energies & elastic moduli of Li-N-H system

Surface energies (J/m?) and elastic moduli (GPa) for Li-N-H system were
computed using DFT and used to estimate interface free energies

Surface energies of phases

Surface a-Li;N B-LisN LiNH LiH LiNH, |
(001) 1.13 0.69 -- -- 1.02
(100) 1.66 1.24 0.59 0.30 0.97
(110) 0.79 1.33 0.23 0.71 1.64
(1-10) 1.70 1.24 - - -
(111) - - 0.62 1.85 0.15
(017) - - - - 0.82
(101) 1.80 1.74 - - -
(010) 1.66 1.24 - - -
Elastic moduli of phases ~N
1473 560 103 0 0 0 1393 393 85 0 0 0
1473 163 0 0 0 1393 85 0 ¢ 0O
[CP )= 2000 0 0 o [C=1¥ ] 1585 0 0 0
’ 416 ¢ 0 ! 179 ¢ 0
Symmetric L6 427 Symmetric 17.9 530
1300 313 133 0 0 O 432 120 120 0 0 0 910 148 148 0 © 0
1338 130 0 o0 0 434 111 0 ©0 0 910 148 0 0 0
: 1498 0 o0 o Emi, 479 0 0 0 — 990 0 © O
G- w7 0 o |G B2 o o |G1° 517 ¢ 0
Symmetric 3zo 0 Symmetric 133 0 Symmetric 3.7 0
\ 38.8 20.5 517 ) )
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