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• Barriers addressed
– Volumetric Density
– Gravimetric Density

•Project Start Date: TBD
•Project End Date: TBD + 3 years
•Total Project Budget: $ TBD

• Total Recipient Share: $ TBD
• Total Federal Share: $ TBD
• Total DOE Funds Spent: $0 – new project

Timeline and Budget Barriers

• Interactions/collaborations: 
Hydrogen Storage Engineering 
Center of Excellence (HSECoE)

• Project lead: D. Siegel, University 
of Michigan

Partners

Overview

2



Background

• A high-capacity, low-cost method for storing hydrogen remains 
one of the primary barriers to the widespread commercialization 
of fuel cell vehicles 

• Storage via adsorption presents one of the more promising 
approaches due to its fast kinetics, facile reversibility, and high 
gravimetric densities

• An unfortunate characteristic of adsorptive hydrogen storage is 
that high gravimetric densities typically come at the expense of 
volumetric density. 

• Development of adsorbents that simultaneously achieve high 
volumetric and gravimetric hydrogen densities – while 
maintaining reversibility and fast kinetics – would constitute a 
significant advance



Relevance: Importance of Volumetric Density

Figure: Effect of gravimetric and volumetric hydrogen storage density on the 
driving range of a fuel cell vehicle.  (Left) Percentage change in driving range 
as a function of gravimetric density. assuming the system achieves the 2017 
volumetric target. (Right) Percentage change in driving range as a function of 
volumetric density, assuming the system achieves the 2017 gravimetric target. 
From Ref. 4.



High-throughput Screening of MOFs
Our database of known MOFs is available for download:

http://esms-lab.engin.umich.edu/MOF_Search_Query.php

J. Goldsmith, A. G. Wong-Foy, M. J. Cafarella, and D. J. Siegel, 
Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: 

Opportunities and Challenges, Chem. Mater., 25, 3373 (2013). 



Top-Performing MOFs Identified by Screening
• Several MOF “Targets of Opportunity” were identified
• Combine high gravimetric and volumetric densities
• “Overlooked:” no/limited experimental evaluation
• Can these be synthesized in a robust form?

EPOTAF (SNU-21) DIDDOK LURGEL (TO-MOF) ENITAX (IMP-9)

Total Grav. (wt. %) 11 10.2 9.7 9.3

Total Volumetric (g/L) 71 60 57 59

Crystal Density (g/cm3) 0.58 0.53 0.53 0.57

Calc’d/Meas. SA (m2/g) 5208/700-900 4651 4386/680 4162

Notes

Best combination of 
grav. & vol. density.
H2 uptake measured
previously: 5 wt %

No measurements CO2 uptake 
measured. No measurements
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Objectives
Develop MOFs with high volumetric and gravimetric hydrogen 
densities:

– Prior studies have largely focused on maximizing gravimetric density alone 
– The proposed effort aims to maximize gravimetric and volumetric 

performance simultaneously, by synthesizing specific MOFs projected to 
embody both of these traits 

– These targeted compounds have been largely overlooked by the community; 
realizing their performance experimentally would set a new high-water mark 
for hydrogen storage density in MOFs

System-level projections: 
– We will project the performance of the most promising identified compounds 

to the system level by parameterizing system models developed by the 
Hydrogen Storage Engineering Center of Excellence (HSECoE) 

– By leveraging these tools we will further clarify how materials properties 
impact system performance 
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Back pressure
regulator

Pump

Supercritical CO2 Activation

• Flowing supercritical CO2 activation is milder than vacuum activation

Batch activation: Nelson, A. P.; Farha, O. K.; Mulfort, K; Hupp, J. T. J. Am. Chem. Soc. 2009, 131, 458. 
Flow activation: Liu, B.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. 2013, 49, 1419. 9



Vacuum or Batch Sc-CO2 Activation vs Flow 
Sc-CO2 Activation 

Liu, B.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. 2013, 49, 1419.
Dutta, A.; Wong-Foy, A. G.; Matzger, A. J. Chem. Sci. 2014, 5, 3729.
Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. 2012, 48, 9838.
Tran, L. D.; Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. Langmuir 2015, 31, 2211.

Materials SA from flow Sc-CO2
activation

SA from vacuum/ batch 
Sc-CO2 activation

UMCM-9 5357 m2/g 1330 m2/g (vac)

FJI 4813 m2/g 4043 m2/g (batch)

MOF-74 (Zn/DOBDC) 1108 m2/g 750-950 m2/g (vac)

UMCM-10 4001 m2/g Structure collapses under 
vac activation

UMCM-12 4849 m2/g Structure collapses under 
vac activation

IRMOF-8 (non-
interpenetrated)

4461 m2/g Structure collapses under 
vac activation

A series of functionalized 
IRMOF-8 (non-
interpenetrated)

~ 4000 m2/g -

HKUST-1 1710-1770 m2/g
(heating required)

682-1944 m2/g (vac)
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Collaborations

University of Michigan, Mechanical Engineering
– Responsible for project management and atomistic 

simulation

University of Michigan, Department of Chemistry
– Responsible for synthesis and characterization of 

targeted MOFs

Ford Motor Company (sub-contractor)
– Responsible for materials augmentation, scale-up, and 

system modeling
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• New project: slated for late summer/early fall kick-off

• Primary goal is to identify, synthesize, and characterize 
known MOFs that have the potential to exhibit high 
volumetric and gravimetric densities simultaneously

• Promising materials will be assessed with regard to their 
engineering properties

• Materials parameters will be used to parameterize 
HSECoE models and project performance at the system 
level

Summary

www.umich.edu/~djsiege
djsiege@umich.edu 12
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