

Hydrogen Component Validation

Danny Terlip*, Kevin Harrison, Michael Peters National Renewable Energy Lab 10 June 2015

*presenter

TV-019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Timeline

Project start date: 10/2012 Project end date: 10/2015¹

Barriers

D - Lack of Performance Data (detailed compressor reliability data and analysis)

Budget

Total DOE funds received to date: \$758k FY14 DOE funding: \$265k FY15 planned DOE funding: \$300k

Partners

- PDC Machines (CRADA)
- XCEL Energy (CRADA)

1 project continuation and direction determined annually by DOE

Objective and Relevance

Compressors are #1 in downtime and maintenance event count accounting for 1/3 of maintenance hours at stations

• **Goal** – Generate data and study compressor operation to determine common failure modes and performance in variable conditions

Impact

- Improve compressor operation and reliability
- Generating performance data on compressor operation
- Highlighting compressor failures and consequences
- Work with manufacturer to improve design and increase reliability

NREL CDP INFR 21 – Created Oct 14

Approach

- Collect data on 4 compressors and ambient conditions while operating within manufacturer's recommendations
 - Integrate compressors with hydrogen production and fueling station
- Current Scope
 - Extensive data collection on temperature, pressure, etc. for DUT1 only
 - Failure data collected for DUT2 and 3

Parameter	DUT1	DUT2	DUT3	DUT4
Duty Cycle	20 hrs/day	As Needed	As Needed	As Needed
Max Discharge Pressure (psig)	6,000	6,000	20,000	14,000
Flow Rate (SCFM ¹)	25	18.8	5	140
Start of Operation	April 2014	December 2014	January 2015	Exp Sept 2015

1) 60°F, 1 atm

Approach

• Deep dive analysis into failures

- Leverage NREL's chemical analysis capabilities for contaminants
- Corroborate failures with similar compressors operating at NREL
- Compare reliability and performance data with data collected through NFCTEC on compressors in the field
- Present analysis to manufacturer on failure causes for DUT1 only

Accomplishments and Progress

Key Findings

- Compressor Performance and Reliability Data
- Seal Weakness is the Main Failure Mechanism
- Preemptive Detection of Catastrophic Seal Failure
- Repairs of Most Common Failures are Expensive and Time Consuming

On frame hoist

Seal Failure

Accomplishments and Progress: Data Collection

One year of operational data collected for DUT1

RV – Readiness
Verification
PT – pressure
transducer
CV – check valve

Parameter	DUT1	
Operating Time	753 hours	
Start/Stops	81	
Amount of H2 Compressed	1808 kg	
Number of Major Failures	4	
Mean Time Between Failures	49 days	
Calculated Flow Rate	3.7 kg/hr	
Average Efficiency ¹	3.54 kWh/kg	

^[1] Constant suction pressure, pf=0.8, includes coolant pump and radiator power consumption (1.86 kW)

Accomplishments and Progress: Data Collection

Power consumption found to be consistent for DUT1

Accomplishments and Progress: Failure Mode Analysis

 Five seal failures have occurred • Four in compressor heads One on a check valve seal Consistent with NFCTEC CDP24

Compressor assembly (6) are seals

Seal Failure 1

Seal Failure 2

Failure Modes for Top Equipment Categories

Accomplishments and Progress: Repair Cost

Failure	Repair Time	People Required	Parts Cost	Parts Lead time	Uncommon Tools Required
CV Seal	<1 hour	1	\$20	3 weeks	Torque wrench, long pick
1 st Stage Seal	3 hours	2	\$1000	6 weeks	Torque wrench, breaker bar, hoist, lint free wipes
2 nd Stage Seal	4 hours	2	\$1,200	6 weeks	Large torque wrench, large breaker bar, hoist, lint free wipes
Minor Leaks	<1 hour	1	N/A	N/A	Torque wrench, leak detector

Downtime can be minimized if spare kits offered by compressor manufacturers are on hand

Accomplishments and Progress: Preemptive Detection

- Monitor leak detection circuit
 - Alarms are set at levels above what may indicate the beginning of a failure
 - Early action may prevent contamination and downtime

Leak detection circuit indicating the beginning of a seal failure

Accomplishments and Progress

Suggested Improvements

- Generate More Performance and Reliability Data
- Overpump Valve Setting Monitor

Accomplishments and Progress

Suggested improvements

- Alternate Testing Schemes
- Contaminant Analysis

Contaminant in hydrogen line

FTIR contaminant analysis

Accomplishments and Progress: <u>Responses to Previous Year Reviewers' Comments</u>

- Technoeconomic analysis of failures lacking
 - Documented for each failure
 - Time for repairs, assuming parts are on hand
 - Parts
 - Uncommon tools
 - Man-power
 - Impacts on station availability are variable
 - Commercial station utilization is low
 - Station configuration can allow for operation without compressor

• "Very few operating hours for how much time project has been ongoing"

- Installation problems were solved
- Operating time significantly increased, but still more limited than commercial
- "It is not clear if it will be possible to reduce the maintenance time and associated costs."
 - Leak detection circuit can pre-emptively indicate a failure and drastically reduce maintenance time
 - A monitor on the overpump valves can warn of drift and corrections can be made before failures occur

Collaborations

External

- PDC Machines Inc. (CRADA) Equipment, technical support, project direction
- XCEL Energy (CRADA) Equipment to build hydrogen production and fueling station
- **Proton OnSite (informal)** Electrolyzer for hydrogen production
- PNNL (info sharing) advanced diaphragm compressor modeling
- Vehicle OEM (informal) testing FCEV technology

Internal

• Renewable Electrolysis (PD031) – Integrated system development and testing

Proposed Future Work

• **DUT1**

- CRADA ends 15 October 2015
- NREL discussing next steps with CRADA partner

• DUT2, DUT3 and DUT4

- More operating hours
- Collect more data and publish results for multiple hydrogen compressor technologies
- Power meters for DUT2 and 4 needed
- Comparison of MTBF and failure modes

Correlate contaminant analysis results

- Effects on fuel cells
- Source of contaminant

Summary

- Four compressors are currently in operation at NREL
 - DUT1: Extensive data collection and purposeful testing
 - DUT2-4: Failure data and operating hours
 - All are integrated into hydrogen stations that fill FCEVs
- Performance and reliability data is compared to NFCTEC CDP
- Key findings and recommendations determined from deep dive failure analyses are given

Technical Back-Up Slides

Power Measurement

- Variable power consumption
 - Constant discharge pressure
 - Current (yellow) fluctuation
 - Voltage (cyan) fluctuation
 - Power fluctuation
 - Average power factor
- Averaging required for long term data collection

