U.S. Department of Energy Hydrogen and Fuel Cells Program

Energy Efficiency & Renewable Energy

2016 Annual Merit Review and Peer Evaluation Meeting

Washington, DC

June 6, 2016

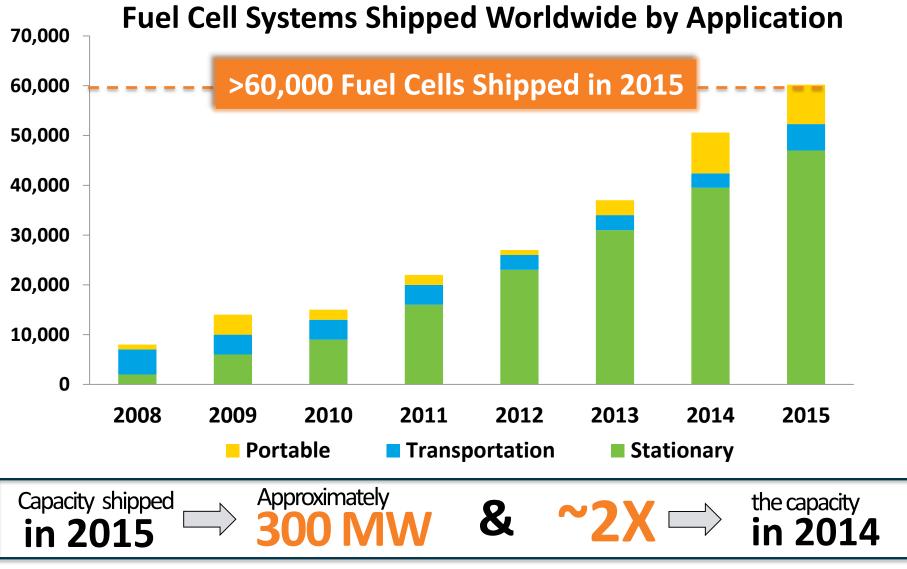
Dr. Sunita Satyapal

Director Fuel Cell Technologies Office U.S. Department of Energy

- History
- Progress
- Future

Fuel Cells: Big Leaps in the Last Year

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 3



Commercial FCEVs are here **today!**

FCEV: Fuel Cell Electric Vehicle

Market Growth in Fuel Cell Sales

Source: Navigant Research (2008-2013) & E4tech (2014-2015)

Consistent ~30% annual growth since 2010

Fuel Cells: Big Leaps in the Last Year

Fuel cell powered lights at the Superbowl

Fuel Cells: Big Leaps in the Last Year

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 6

National Hydrogen & Fuel Cell Day | 10.08 Hydrogen

The First Ever National Hydrogen & **Fuel Cell Day** (Held on its very own atomicweight-day)

www.energy.gov/eere/fuelcells

DOE Activities Span from R&D to Deployment

U.S. DEPARTMENT OF ENERGY Renewable Energy

last

7 vrs

Fuel Cell Technologies Office | 7

Research & Development

Fuel Cells

- >50% decrease in cost since 2006
- 5X less platinum
- 4X increase in durability

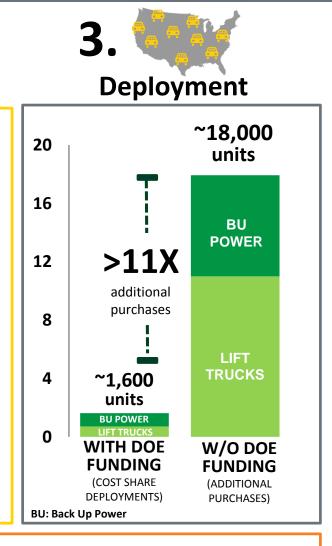
\$53/kW in 2015*

at high volume

\$124/kW in 2006

*\$280/kW low volume

Demonstration

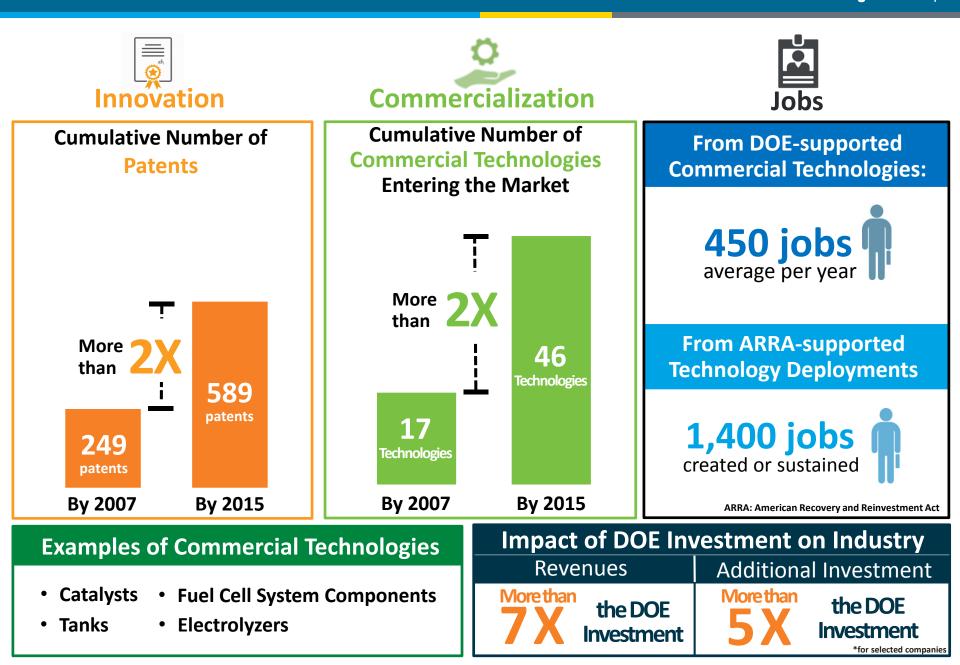

Forklifts, back-up power, airport cargo trucks, parcel delivery vans, marine APUs, buses, mobile lighting, refuse trucks

>220 FCEVs, >30 stations, >6M miles traveled

World's first tri-gen station

FCEV: Fuel Cell Electric Vehicle

Savings from Active Project Management & Downselects



DOE Impact- H₂ and Fuel Cells

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 8

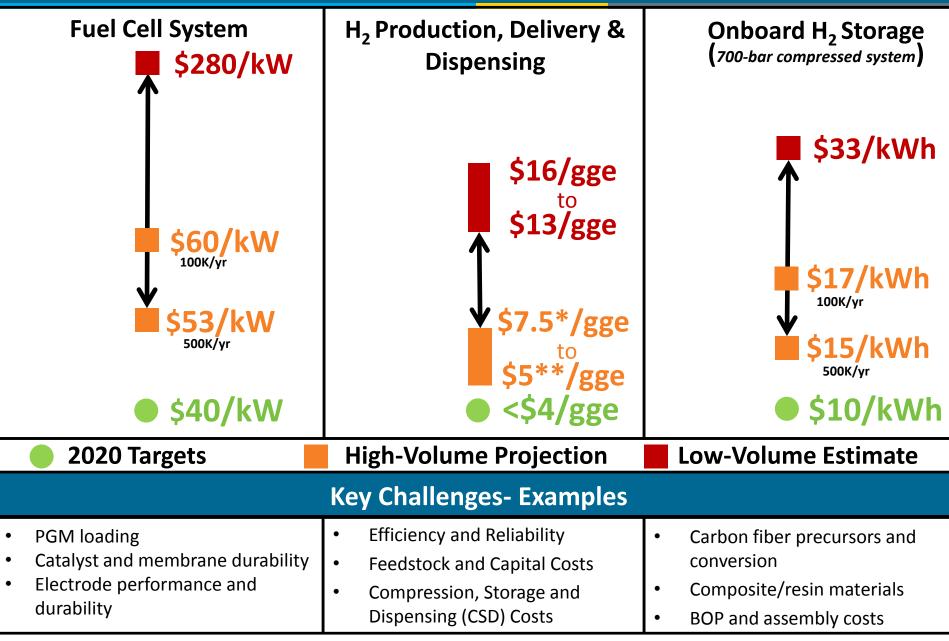
What can we learn from history?

Henry Ford and his first car, the Quadricycle, built in 1896

FORD CARS

1909 MODELS

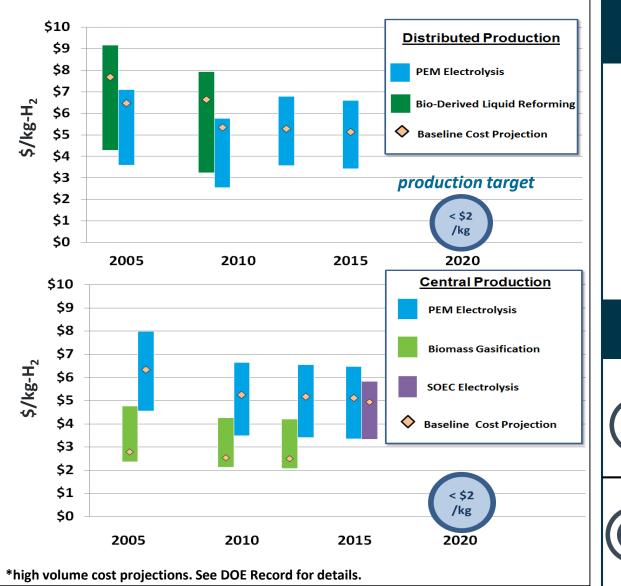
The enormous demand for the new 4-cylinder Model "T" touring car makes it impossible for us to get these cars on short notice; deliveries will be made strictly in the order given. If you want one of these cars, see us soon.


\$850 f. o. b. factory

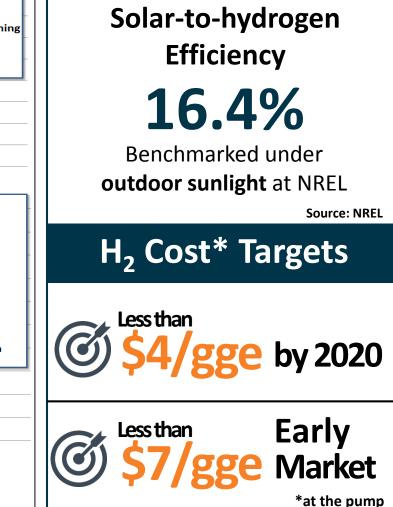
Colorado Auto Supply Co. Distributers 8-10 E. BIJOU STREET

Three or four splendid secondhand cars for sale cheap.

DOE Cost Targets and Status

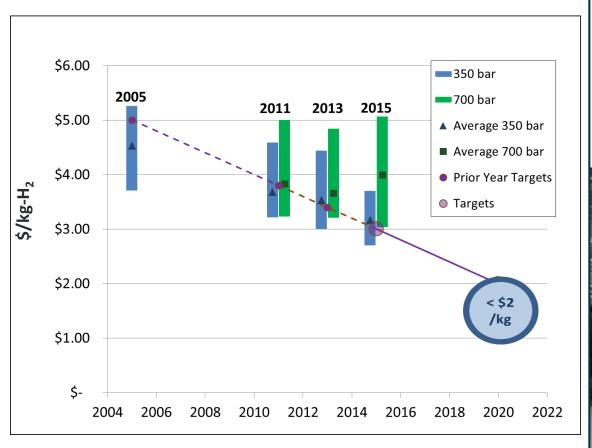


*Based on Electrolysis **Based on NG SMR


Highlights: Renewable H₂ Production

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 12

Cost* Renewable H₂ Production Pathways


World Record

Highlights: H₂ Delivery

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 13

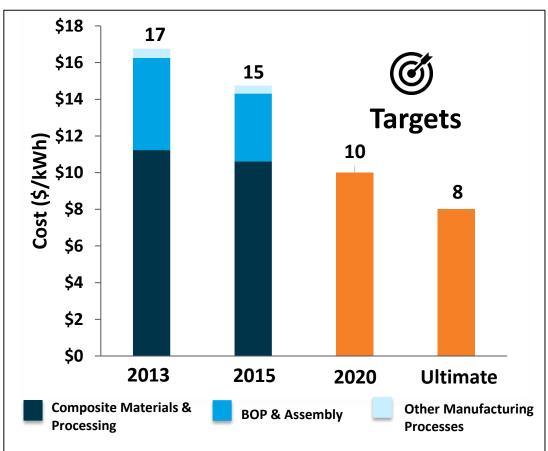
Cost of Delivering and Dispensing H₂ from Central Production

- Projected to high volume with economies of scale
- Delivery/dispensing apportionment of the <\$4/kg P&D target

World Record

- First ever liquefaction of a gas from room temperature with magnetocaloric cooling
- Record breaking 100°C temperature span

Source: PNNL, Emerald Energy , Ames Laboratory

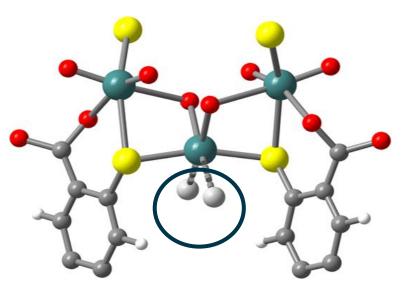

Highlights: H₂ Storage

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 14

Cost* of High Pressure H₂ Storage System



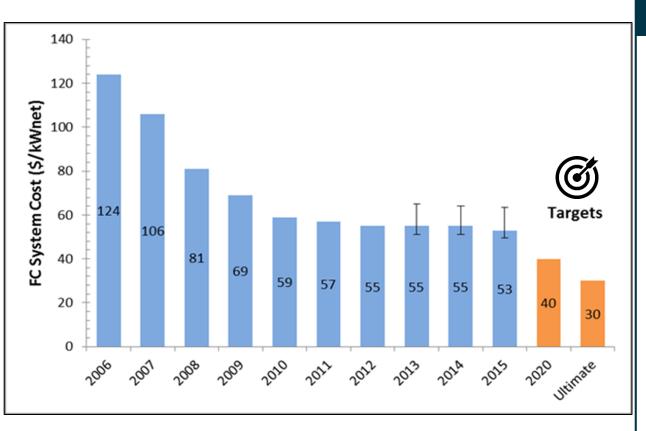
*Assumes high volume (500K/yr.), 2007\$, 700-bar type IV single tank system. Based on program record 15013

12% Net Cost Reduction since 2013 for H₂ storage systems

World's First

- Two H₂ molecules adsorbed at a single metal site
- Synthetic path to materials with higher densities of adsorbed H₂

Source: Runčevski, T.; Kapelewski, M. T.; Torres-Gavosto, R. M.; Tarver, J. D.; Brown, C. M.; Long, J. R. *Chem. Commun.*, submitted.


Highlights: Fuel Cells

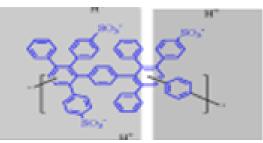
 U.S. DEPARTMENT OF
 Energy Efficiency &

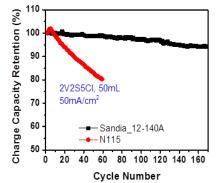
 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 15

Modeled Cost* of Fuel Cell System Over Time

* 80-kW_{net} PEM fuel cell system projected to high-volume* manufacturing

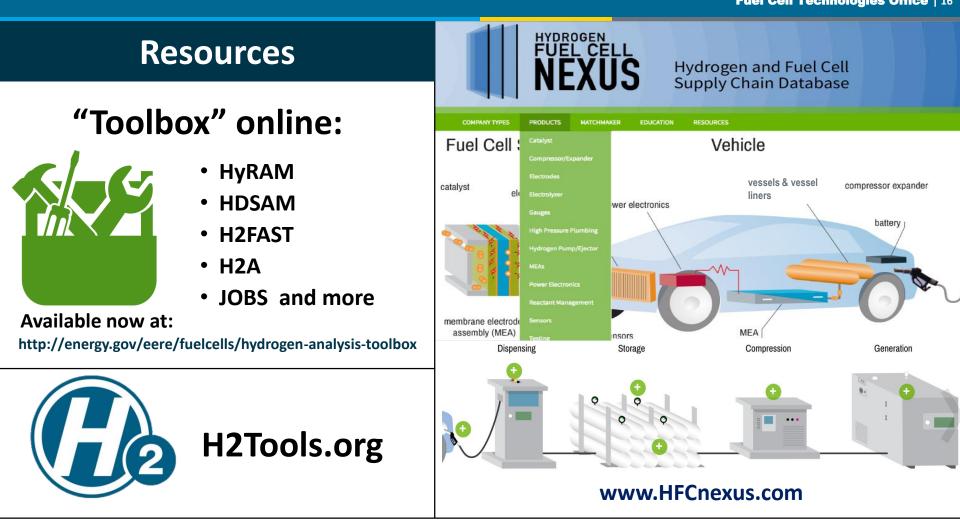

8,000 Hrs.


Ultimate Durability

Target Established

World Record

- Alkaline exchange Membrane
- Record breaking durability
- Opportunities in flow batteries/electrolysis



Source: SNL

Tools, Models and Databases Online

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 16

Coming in September/October 2016: Supply Chain Exchange and Partnership Development Regional Forum- North Canton, OH

Organized by Ohio Fuel Cell Coalition (OFCC) and Partners

Supplier engagement & collaboration & information readily and publicly accessible

First Lady's and Dr. Jill Biden's Initiative: Joining Forces

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 17

Supporting veterans and their families in 3 areas:

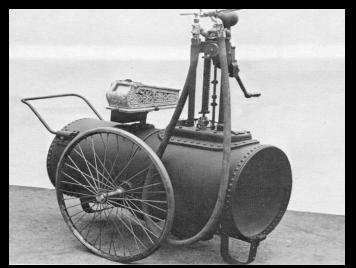
Employment

Education

Strong Commitment by the H₂ and Fuel Cells Community

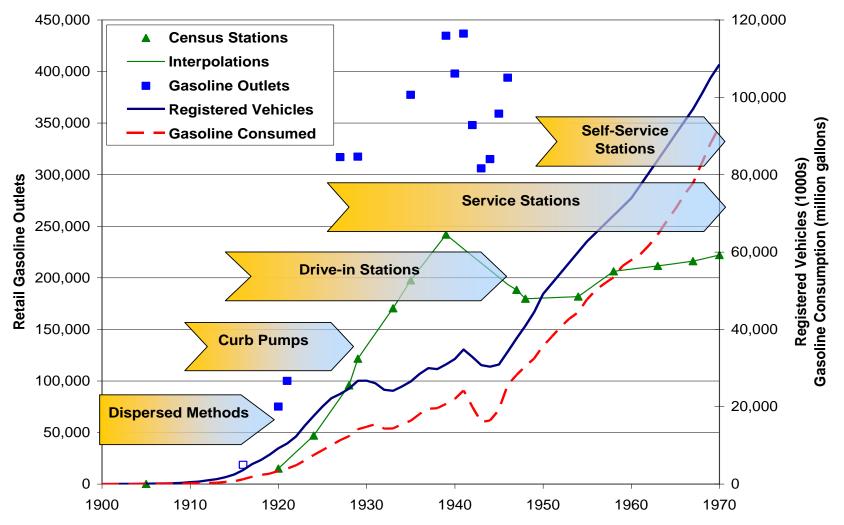
Air Liquide and PDC committed to hiring veterans for 10% of their workforce

What can we learn from early gasoline infrastructure?


Many diverse options Cans, barrels, home models, mobile refuelers

Source: M. Melaina 2008.

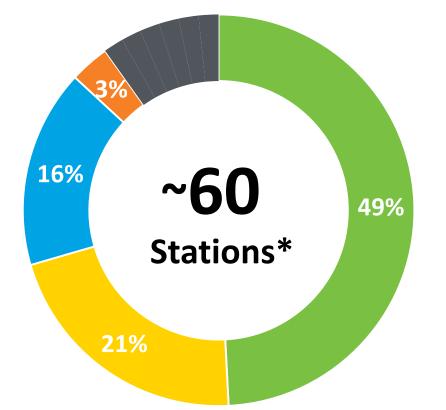
Source: Vieyra, 1979


Source: Milkues, 1978

Refueling Methods Evolved Over Time

ENERGY | Renewable Energy Fuel Cell Technologies Office | 20

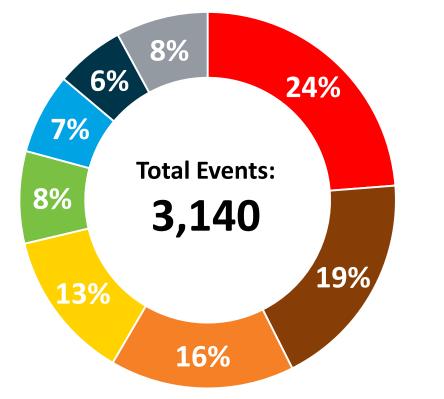
Energy Efficiency &


U.S. DEPARTMENT OF

Source: Turn of the Century Refueling: A Review of Innovations in Early Gasoline Refueling Methods and Analogies for Hydrogen (Melaina 2007)

History shows phased introduction of different refueling methods

CA: ~ 20 stations now, up to 100 planned Northeast: 12 stations planned


*Includes current (21), future (38) and retired (2) stations

Delivered Compressed SMR On-Site Electrolysis Delivered Liquid SMR On-Site SMR Other Delivered Pipeline Delivered Liquid By-Product Delivered Compressed By-Product On-Site Tri-Gen Mobile Fueler Trailers

NREL cdp_infr_11 Created: Mar-30-16 11:06 AM | Data Range: 2008Q3-2015Q4

Example: Sources of H₂ Infrastructure Maintenance

Compressor Dispenser Entire Safety Storage Reformer Thermal Management Other Chiller, Feedwater

NREL cdp_infr_21

Most maintenance related to compressors and dispensers

Contamination is a key issue: See Database <u>www.nrel.gov/hydrogen/system contaminants data/</u>

To participate: techval@nrel.gov

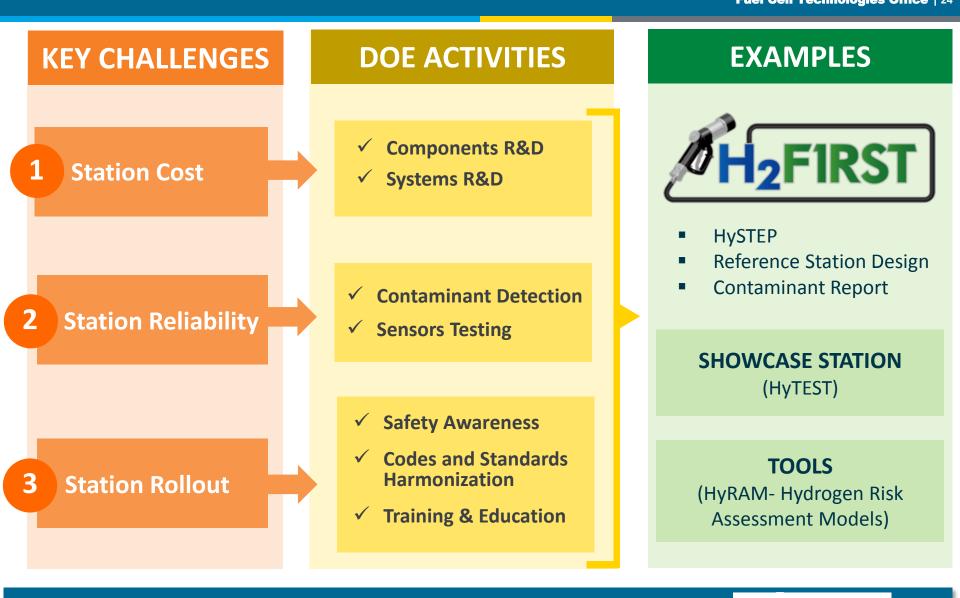
Providing insights to guide H₂ infrastructure activities and to maximize impact

Complementing Retail Stations: H₂ Refuel H-Prize ENERGY Energy Efficiency & Renewable Energy & Renewable & Renewa

\$1M Competition: On-site H₂ fueling

Finalist Team Announced! More at hydrogenprize.org simple.fuel.™

Innovative packaging concepts Electrolysis 350 and 700 bar



© Ivys Inc., All Rights Reserved 2016

Email your Feedback info@teamsimplefuel.com

DOE H₂ Infrastructure Strategy

ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office** | 24

DOE efforts support public-private partnership:

H₂USA

Hydrogen & Fuel Cells Budget

	FY 15	FY 16	FY17
Key Activity	(\$ in thousands)		
	Approp.	Approp.	Request
Fuel Cell R&D	33,000	35,000	35,000
Hydrogen Fuel R&D ¹	35,200	41,050	44,500
Manufacturing R&D	3,000	3,000	3,000
Systems Analysis	3,000	3,000	3,000
Technology Validation	11,000	7,000	7,000
Safety, Codes and Standards	7,000	7,000	10,000
Market Transformation	3,000	3,000	3,000
Technology Acceleration	0	0	13,000^²
NREL Site-wide Facilities Support	1,800	1,900	N/A
Total	97,000	100,950	105,500

Office	FY 2016*
EERE	\$101.0M
Basic Science	\$18.5M
Fossil Energy, SOFC	\$30.0M

FY 2016 DOE Total: ~\$150M

*Estimated for BES funding (based on FY15)

New in FY17 Request

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D

²Combines Manufacturing R&D, Technology Validation, Market Transformation.

Sustained, stable funding requests and appropriations

ENERGY Renewable Energy Fuel Cell Technologies Office 26
Consortium Approach
Multi-lab core capabilities with steady influx of new partners
Core Consortium Team Consortium Lead, Deputy Lead, & Technical Partners: National Labs FOA University & Non-Profit

3 Consortia Launched:

Supporting the Energy Materials Network

Energy Materials Network

PGM-Free Catalysts for Fuel Cells

Advanced Research for Hydrogen Storage Materials

Advancing fuel cell performance and durability through six areas:

1. Electrocatalysts and Supports

- 2. Electrode Layer
- 3. Ionomers, GDL, Bipolar Plates
- 4. Modelling and Validations
- 5. "Operando" Evaluation
- 6. Component Characterization

Future: Renewable Hydrogen Consortium

ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office** | 28

Will be led by NREL with SNL and LBNL on core team: Multiple partners to be added in FY17

Focus: Materials for Renewable H₂ Production including:

Advanced Electrolysis

Photoelectrochemical

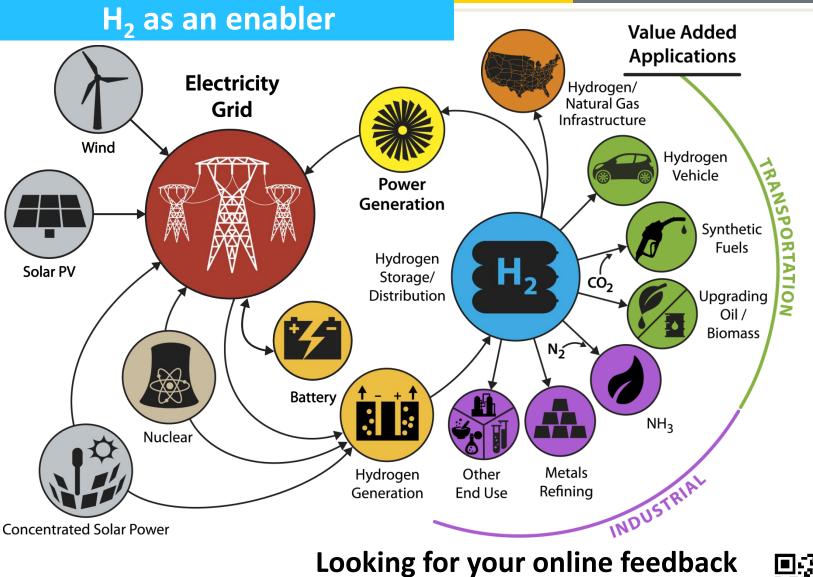
Solar Thermochemical

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 29

What does lava flowing into water & STCH* production have in common?

Photo Credit : iStock

Two-step thermochemical water-splitting cycle 🗭 Hydrogen


* Solar Thermochemical Hydrogen production

Source: McDaniel Anthony (SNL)

Harnesses the same physics occurring with lava flowing into water to produce H_2

H₂@Scale: Vision for the Future

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 30

*Illustrative example, not comprehensive Source: NREL; Lab Big Idea Summit

https://www.surveymonkey.com/r/h2atscale

Visit display by registration desk

H₂ @ Scale Potential:

Reduction by Sector

75% Grid

25% Transportation

> 25% Industrial

A CLEANER FUTURE 50% fewer GHG emissions than today by 2050

MORE Jobs Security Resiliency

Collaborations and Partnerships

ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office** | 32

R&D	Demonstration & Deployment	Accelerated Commercialization
DISTRICT AND INNOVATION FOR DENICLE EFFICIENCY AND ENERGY SUSTAINABILITY Pre-Competitive R&D	California Fuel cell Partnership	• International Government
USCAR, energy companies, EPRI and utilities	Connecticut Hydrogen-Fuel Cell	Coordination18 countries and European Commission
iea International Energy Agency		 Public-Private Partnership
Implementing Agreements 25 countries	 State Partnerships and Collaborations 	 >45 partners FCHEA (trade association)

Hydrogen and Fuel Cells Technical Advisory Committee (HTAC)

Industry, academia and state & federal stakeholders working together

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov