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Program Scope 
 
 This program combines theory, inorganic synthesis, and catalytic reaction kinetics experiments in an integrated 
approach towards identifying metal and alloy catalysts with high activity and selectivity for high-impact reactions. 
Theoretical calculations identify the most promising catalyst structures and compositions for novel controlled synthesis, 
while reaction kinetics experiments evaluate the as-synthesized catalysts for their activity and stability. Potential 
applications involve low-temperature fuel cells, hydrogen production and purification, and liquid fuels production, which 
all strongly support the DOE’s mission. 
 
FY 2016 Highlights 
 
Shape-selected alloy nanocatalysts for the oxygen reduction reaction (ORR) [1-4] 
 

Depositing ultrathin Pt layers onto a Pd template of controlled shape is an attractive approach to reducing the 
content of precious Pt while improving its activity for the ORR, which is limited by strong binding of adsorbed O and OH 
intermediates. We have deposited a controlled number of Pt layers onto nanostructured Pd cubes, octahedra, and 
icosahedra, and the measured ORR activities surpassed those of a commercial Pt catalyst by two, three and four times, 
respectively, on the basis of Pt-mass. Density functional theory (DFT) calculations reliably predicted the experimentally-
observed activity trends as a function of number of Pt overlayers deposited on the Pd template. The calculations attributed 
the enhanced activity to the compressive strain imposed on the Pt overlayer(s) by the Pd substrate, which weakened the 
binding of O and OH. We also identified a unique atomic arrangement of the Pt overlayers in the icosahedral catalysts, in 
which tensile strain on the underlying Pd lattice facilitated the incorporation of extra Pt atoms in the overlayers relative to 
the Pd template and therefore led to a net beneficial compressive strain on the Pt overlayers. 

 
Additionally, we have shown that the Pd templates can be selectively etched to yield hollow Pt nanocage 

structures, which exhibited more than double the activity of their Pd@Pt core@shell counterparts. DFT calculations on 
novel “membrane” models attributed the enhanced activity to a further shortened Pt-Pt interatomic distance relative to the 
already-compressed core@shell structure.  
 
Formation mechanism of hollow nanocage structures [4] 
 

In addition to predicting catalyst activity toward ORR, DFT calculations also elucidate the mechanisms by which 
the hollow nanostructures form. Rigorous DFT calculations demonstrate that Pd can only be etched through vacancies in 
the Pt shell. We show that these vacancies can be readily formed by removal of Pd atoms dispersed in the Pt shell during 
the core@shell formation process. As shown in Figure 1, it is energetically more favorable for Pt adatoms (deposited from 
solution) to substitute into the Pd template, thus yielding a mixed surface composition as Pt is continually deposited in a 
layer-by-layer fashion. It is therefore possible for contiguous Pd channels to form; these enable the etching of the core to 
yield the hollow structure. We further identified an optimal Pt shell thickness of four to six layers. Thinner than this would 
allow for too many channels to form, which jeopardizes the mechanical stability of the hollow structure. On the contrary, 
thicker layers would inhibit the formation of contiguous Pd channels. This optimal shell thickness was confirmed by 
experimental observations that hollow structures could only be successfully formed from Pt-Pd core@shell catalysts with 
four to six overlayers of Pt. 
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Reaction mechanism for electro-oxidation of ammonia [5] 
 

We have constructed a free energy diagram (see Figure 2) for two mechanisms for NH3 electro-oxidation on 
Pt(111). The two mechanisms differ in the extent of dehydrogenation needed before making an N-N bond, with the N+N 
mechanism requiring full dehydrogenation to atomic N before N-N bond formation, while the Gerischer-Mauerer 
mechanism allows for this bond to form between hydrogenated NHx species. Our calculations explain the experimentally-
observed narrow active operating window of potentials for Pt(111), which starts with activating the Gerischer-Mauerer 
mechanism, and ends with poisoning the surface with N adatoms at the onset of the N+N mechanism. Similar studies were 
performed on 11 other close-packed monometallic surfaces, and reinforced the need to avoid the N+N mechanism for 

avoiding N poisoning. A simple Sabatier analysis shows Pt to 
be most active, followed by Ir and Cu. Hence, improved 
catalysts should bind atomic N weaker than Pt, but stronger 
than Cu. 
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Figure 1 Mechanistic details involved in the deposition 
and etching processes. (A) Pt atoms deposited on the Pd 
surface may “hop” across the surface or substitute into 
the surface (activation barriers are shown), leading to a 
mixed outer-layer catalyst composition. (B) Schematic of 
the major steps involved in the continuous dissolution of 
Pd atoms from a Pd@Pt4L nanocube to generate a Pt 
cubic nanocage. 

Figure 2. Free energy diagram for two mechanisms of N2 
formation on Pt(111) at 0 VRHE. Stoichiometry is implicitly 
balanced by H+, OH-, H2O, and e-. 
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