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•Project Start Date: 09/22/2014
•Project End Date: 10/31/2017

Timeline
Barriers

• FuelCell Energy, Inc. (project lead)
• University of Connecticut - Center for 

Clean Energy Engineering (C2E2)
• Degradation mechanistic understanding

• Illinois Institute of technology (IIT)
• Electrolyte wettability investigation

Partners

Budget
•Total Project Budget: $4,519K

• Total Recipient Share: $1,356K
• Total Federal Share: $3,163K
• Total DOE Funds Spent*: ∼$1,424K

* As of 3/31/16

Barrier Target
A (durability): 
Incomplete 
understanding of 
degradation mechanism 80,000h operating 

lifetime (2020)A (durability) & B (cost): 
Develop cost-effective 
matrix degradation-
mitigation schemes 



Relevance
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Overall Objectives: Develop an innovative durable DFC (Direct Fuel Cell) 
electrolyte matrix (‘Smart’ Matrix) to enable >420kW rated stack power and 
10-year (80,000h) stack service life*
 Enabling technology for hydrogen infrastructure
 Increase market penetration for stationary fuel cells
 Enabling technology for CO2 capture
 Enable domestic clean-energy job growth

*current-generation: 350kW rated stack power and 5-year stack service life

RD&D Technical Targets: 100 kW–3 MW Combined Heat and Power and 
Distributed Generation Fuel Cell Systems Operating on Natural Gas

Characteristic DFC Baseline 2020 Targets

Electrical efficiency at rated power 47% >50%

CHP energy efficiency 90% 90%

Operating lifetime >40,000h 80,000h 

 FCE confirmed >5 years stack life during field operation at customer sites



Relevance
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Objectives for Current Project Year (April 2015 -
April 2016)
• Scale up manufacturing “Smart” Matrix and ready for 

stack evaluation

Impact since 2015 AMR
• Projected “Smart” Matrix design capable of achieving 

80,000h life target (Barriers A and B)



 Coarsening of α-LiAlO2 support material leading to pore growth
 Reduced electrolyte retention capability
 Increased cross-leakage
 Increased ohmic resistance
 Electrolyte mal-distribution and cell performance impact

 Besides enhancing matrix material stability under “Smart” Matrix 
program, FCE is actively developing other advanced cost-effective 10-
year life stack components.

Why Do We Need “Smart” Matrix?
Enhance Matrix Material Stability

240 h ∼3,900 h Coarsening via
Ostwald Ripening
dissolution/deposition
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Approaches to Achieve ‘Smart’ Matrix

Goals Approaches Desired  Properties Status

>20% porosity increase and 
improved fine-pore structure 
(>30% reduction on pores 
larger than 0.2µm)

>25% increased mechanical 
strength

Verify matrix sealing efficiency

Proprietary pore former Chemical compatibility 
Optimize slurry 
formulation and 
processing

Engineered additives

Uniform particle size 
distribution

Improved slurry rheology, 
particles packing & 
manufacture yield



Stable fine pores for enhanced 
electrolyte retention (<50% 
pores larger than 0.2µm and 
<5% phase transformation) in 
endurance tests (>5,000h)

Stabilized LiAlO2

Cost-effective LiAO2
manufacturing process

Engineered additives

Stable phase (100% α-LiAlO2 
phase purity)

Low solubility

Slow coarsening



Understand matrix phase, 
microstructure and wettability 
changes

Effect of temperature, 
gas composition and cell 
location

Fundamental parameters 
governing matrix material 
stability and wettability 



Approach: Near-term Milestones & Go/No-Go Decisions
Program on track

Go/No-Go Description Status

FY2016 
(10/31/2016)

“Smart” Matrix technical targets verified in >5,000h 
cell tests
 Start technology stack

50%

Milestone Description Status

Through
3/31/2016

 Verify “Smart’ Matrix durability in >5,000h endurance cell tests 100%

 Report on degradation mechanistic understanding 100%

Remaining
FY2016

 Scale-up “Smart” Matrix manufacturing process 50%

 Start “Smart” Matrix evaluation in technology stack 0%

FY2017  Verify “Smart” Matrix performance, endurance and gas 
sealing efficiency in >5,000h cells and technology stack 10%
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Lab-Scale Trial Batches

Accomplishment: Achieved Targeted >25% 
Increase in Mechanical Strength

20cmx20cm matrix

Lab-scale tape casting

 Smart matrix consistently demonstrated increased mechanical strength 
(verified in >30 batches)

Target (25% increase in mechanical strength)
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Achieved Targeted Matrix Sealing Efficiency 
and Ohmic Resistance Reduction

Average Baseline

Smart Matrix

 Demonstrated significantly improved 
gas sealing (cross-over) efficiency 
(>20 single cell tests)

Accelerated cell test conditions
• 50°C higher temperature
• 20% higher steam content
• 10% higher fuel utilization

 Achieved targeted >20mΩ cm2

resistance reduction in >20 cells 
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Acceleration Test Protocols
Basis:
 Baseline matrices already verified >5-year field-service life in many commercial units.
 Accelerated single-cell test protocols

 50°C higher cell temperature
 20% higher humidity
 10% higher fuel utilization

 Acceleration factors: pore coarsening and sealing stability (6X-12X)

 ∼5,000h accelerated cell test demonstrated 80,000h stack durability, by projection.

5 5
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‘Smart’ Matrix

Baseline Matrix

Fine PoresLarge Pores

4,900h

5,100h
4,700h
700h

Verified ‘Smart’ Matrix Pore Structure Stability
Endurance (~5,000h) pore-structure comparison

 Achieved projected EOL stable pore structure target (<50% of 
pores >0.2µm in 10 years)

Baseline Matrix

BOLTarget

EOLTarget

‘Smart’ Matrix
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EOL Target 

Baseline Matrix

Smart Matrix

Smart Matrix

Baseline Matrix

Particles coarsening at reducing 
anode side (fuel inlet)

Improved “Smart” Matrix Phase and 
Particles Stability

 Smart matrix shows excellent phase and particle-size stability
 Projecting <3% phase transformation and ∼3.5× reduction in 

coarsening in 10-years, meeting EOL targets 



LiAlO2 Dissolution
Carbonate dissociation: CO3

2- ↔ CO2 + O2- (basicity)
Basic dissolution: LiAlO2 + O2- ↔ Li+ + AlO3

3-

Coarsening mechanism
 Reducing environment promotes surface non-stoichiometry, Al 

reduction and crystalline cationic disorder (verified by XPS/XRD)
 Less stable/more soluble intermediate surface/phases dissolve and 

deposits on α phase (Ostwald ripening)

LiAlO2 Coarsening Mechanism

Li/Al~0.83 Li/Al~0.66

Exposure to
4%H2-N2-3%H2O
(w/o electrolyte)

Before After
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4%H2-1%CO2-N2

Stability of Baseline LiAlO2 Powder
Effect of gas atmosphere at 700°C in the presence of electrolyte

N2-H2O

 Highly basic electrolyte under extremely low PCO2 accelerates 
dissolution, phase transformation and coarsening

 Reducing environment accelerates coarsening

Flooded loose powder

5%O2-N2
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LiAlO2 pellets - 4%H2-3%H2O-N2

0%
10%
50%
100%

: α-LiAlO2
: γ-LiAlO2

fill level 

LiAlO2 phase transformation and coarsening in reducing 
environment: Effect of electrolyte fill level (700°C/100h)

 Higher electrolyte fill level promotes dissolution and diffusion, 
hence accelerates Ostwald ripening.

flooded pellet 

Major γ-LiAlO2 and minor α-LiAlO2 
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Short-term tested matrix (96h)
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Rapid complete wetting

Short-term matrix (96h)
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Long-term matrix (>2,000h)

Baseline matrix wettability characterization
No effect of coarsening on LiAlO2 inherent wettability

Long-term tested & coarsened 
matrix (2,500h)
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 Program relevance to DOE-EERE RD&D targets:
 The program objective is very relevant to EERE RD&D technical targets of 100 kW–3 

MW CHP and DG fuel cell systems operating on natural gas by 2020. The program 
success will also enable cost-effective distributed hydrogen production and CO2
capture. DFC electrolyte matrix life enhancement is key to achieve this target.

 Define acceleration protocols and acceleration factors to assure technical 
improvements projecting to 10-year stack life:
 Acceleration protocols and factors are reported in this presentation.

 Cost reduction as an important program effort:
 Doubling stack life to 10 years can result in a substantial reduction of cost-of-electricity 

(COE). FCE’s technical approach adopts low-cost additives and commercial standard 
manufacturing processes.

Matrix stability as 10-year stack life controlling factor:
 Matrix durability is one of the key DFC life-controlling factors (“Molten Carbonate and 

Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis” Technical Report, 
NREL/TP-560-49072, September 2010). FCE is also actively developing other 
advanced components to achieve 10-year stack life for future-generation products.

Responses to previous year reviewers comments
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 FCE collaborates with subcontractors UConn and IIT to develop 
fundamental understandings of matrix coarsening and wettability and to 
help design mitigation approaches

Collaborations: UConn/IIT has significant 
prior experience and analytical capability

Understand matrix coarsening mechanism & electrolyte retention capability

Expertise in high temperature 
fuel cell fundamental, 
modeling, electrolyte wetting

• Evaluate matrix electrolyte 
wettability

Expertise in high temperature 
fuel cell, material stability 
and characterization

• Characterize matrix 
microstructure evolution 

• Measure LiAlO2 solubility
• Develop mechanistic 

understanding of coarsening

Prof. JR Selman
• Consulting on 

electrolyte contact 
angle/distribution
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Remaining Challenges and Barriers

Challenges Barrier
Confirm “Smart” Matrix material stability in endurance 
cells (>5,000h) A
Scale up formulation and process to manufacture full-size 
production “Smart” Matrix and validate in full-area DFC 
technology stack (>5,000h)

A, B
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Proposed Future Work

Milestone Description Approach % 
Complete

Remaining
FY2016

Perform scale-up 
manufacturing trials and 
start technology stack

 Optimize parameters & 
processing conditions

 Scale-up trials in 
production facility

50

FY2017

Confirm design meeting 
technical requirements in 
accelerated cell and 
technology stack tests 
(>5,000h): sealing 
efficiency, performance 
and material stability

 Perform long-term 
(>5,000h) tests of cell and 
technology stacks: 
measure electrochemical 
performance, matrix gas 
sealing efficiency, ohmic 
resistance, and material 
stability.

10
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Technology Transfer Activities
• FCE plans to further validate developed “Smart” Matrix in endurance 

technology (30kW) and full-size prototype product stacks tests (>1 year 
operation)

• Controlled release “Smart” Matrix in DFC products
• Enhance DFC market penetration and clean-energy job creation
• Enable cost-effective distributed hydrogen-production DFC-H2 system
• Enable DFC-CO2 capture for reducing CO2 emission

Trigen: power+H2+heat

DFC



 Achieved all quarterly and Go/No Go milestones
 Met target of >25% improved matrix mechanical strength compared to 

baseline
 Achieved targets of sealing efficiency and >20mΩcm2 ohmic resistance 

reduction
 Successfully verified smart matrix support material stability in lab-scale 

endurance cells (>5,000h)
 Met targeted milestones of projected <5% phase transformation (α→γ-LiAlO2) 

and <50% pores larger than 0.2µm in 10 years

 Degradation mechanistic understanding
 Confirmed accelerated coarsening in highly basic electrolytes
 Demonstrated strong effect of electrolyte fill and temperature on 

coarsening rate and phase transformation.
 Reducing environment promotes surface non-stochiometry, hence 

enhancing Ostwald ripening

Summary
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Technical Back-Up Slides
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DFC Product Commercialization

• More than 300 MW capacity installed/backlog.
• Generating power at about 50 locations worldwide.
• Generated ∼5 billion kWh ultra-clean electricity.
• Annual production run-rate 70 megawatts. 

59MW Fuel Cell Park, 
Hwaseong, South Korea 14.9 MW Fuel Cell Park, 

Bridgeport, CT

24



CARBONATE FUEL CELL MATERIALS

MO2616BW
042701

OXIDANT

MATRIX
•Support: LiAlO2

•Electrolyte: Liquid Alkali Carbonate Mixture

FUEL

BIPOLAR PLATE
(Engineered Stainless Steel)

ANODE
(Ni-Cr or Ni-Al Alloy)

CATHODE
(Lithiated NiO)

Matrix: a key cell component for enabling 80,000h stack life 
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DFC Configuration

Individual fuel cell 
component

400 components 
are used to build 
one 350 kW fuel 

cell stack

4 stacks are combined to 
build a 1.4 MW modules

Two modules are used 
for a 2.8 MW power plant

26
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LiAlO2 Ostwald Ripening Understanding 

Ostwald Ripening: smaller particles dissolve and deposit on larger particles 
in order to reach a more thermodynamically stable state

• High solubility promotes coarsening
• Diffusion and/or dissolution/deposition control

Understand LiAlO2 coarsening mechanism
Investigate controlling parameters under this program

 Temperature, gas atmosphere
 Particle-size distribution
 Solubility
 Powder defect chemistry
 Phase transformation, deposition kinetics
 Additive



• Possible LiAlO2 Dissolution Mechanism
– Carbonate dissociation: CO3

2- ↔ CO2 + O2- (basicity)
– Basic dissolution: LiAlO2 + O2- ↔ Li+ + AlO3

3-

Higher PCO2 and lower temperature: lower solubility and slower 
coarsening 
Solubility β>γ>α

• Additional factors:
– Intermediate phase formation or Li elution
– Agglomeration, non-uniform particle-size distribution

 Very limited study on LiAlO2 coarsening under 
reducing anode atmosphere

Literature Information on LiAlO2 Stability
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