Highly Stable Anion-Exchange Membranes for High-Voltage Redox-Flow Batteries

2016 DOE Hydrogen and Fuel Cells Program Review

Yushan Yan (PI)

June 8, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

• Start: June 1, 2015
• End: May 31, 2017
• % complete: ~45%

Barriers

• Durability (Oxidative Stability of Membrane)
• Performance (Ion Conductivity)
• Cost

Budget ($K)

• UD, $500 K
• NREL, $100 K
• Total Project Budget $750K
 ($600K DOE Share + $150K Cost Share)

Partners – Principle Investigators

• University of Delaware – Yushan Yan, Shuang Gu, Bingjun Xu
• National Renewable Energy Laboratory – Bryan Pivovar
Objectives:

- Develop a class of anion-exchange membranes (AEMs) with very high oxidation resistance for high-voltage cerium redox-flow batteries (RFBs), and other alkaline membrane-based electrochemical devices such as fuel cells and electrolyzers.

- Gain new knowledge of polymer chemistry and membrane technology that will help advance the design and development of polymer electrolytes for electrochemical devices.

Relevance:

- With voltages more than double the voltage of standard all-vanadium RFBs, cerium RFBs hold the potential to offer high-performance and low-cost electricity storage solution for renewable energy.

- Stable AEMs can also be used for hydroxide exchange membrane fuel cells (HEMFCs), which will improve the cell durability and performance (e.g., operating at elevated temperatures). Another potential application of stable AEMs is in alkaline membrane electrolyzers for renewable hydrogen production.

- Stable AEMs are the key missing element in making cerium RFBs a viable technology. Stable membranes are also necessary to achieve highly durable AEM electrolyzers, which will lower the cost for hydrogen production.
Approach

Project Milestones

<table>
<thead>
<tr>
<th>No.</th>
<th>Due Date</th>
<th>Milestones</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1</td>
<td>10/30/2015</td>
<td>Less than 10% loss of initial weight for the identified polymer at 40 °C for 1000 h in 0.5 M Ce(IV)(ClO₄)₄</td>
<td>Completed on time</td>
</tr>
<tr>
<td>M1.2</td>
<td>1/31/2016</td>
<td>Less than 5% of multiple brominated 9MeTTP⁺ cation based on ¹H and ³¹P NMR spectroscopy</td>
<td>Completed on time</td>
</tr>
<tr>
<td>M1.3</td>
<td>4/30/2016</td>
<td>More than 95% purity for synthesized 9MeTTP⁺ - functionalized polymers based on ¹H and ³¹P NMR spectroscopy</td>
<td>Completed on time</td>
</tr>
<tr>
<td>M1.4</td>
<td>7/31/2016</td>
<td>Less than 20% loss of initial IEC for 9MeTTP⁺ - functionalized polymers at an accelerated degradation test at 40 °C for 1000 h in 0.5 M Ce(IV)(ClO₄)₄</td>
<td>To be performed</td>
</tr>
</tbody>
</table>
High voltage aqueous redox flow batteries, ARPA-E OPEN 2012

Approach

- Single-membrane design
- Cannot effectively separate anion and cation
- Cannot effectively separate acid and base
- Requires double-membrane design

Zn-Ce RFB

- Single-membrane design

Concept of double-membrane RFB
Approach
Alkaline Stability of 9MeTTP⁺

1 M KOD solution, 80 °C, MeOD/D₂O = 5/1 (vol). \(^{31}\text{P}\) NMR spectroscopy was used to determine the degree of degradation for all phosphonium cations, and \(^1\text{H}\) NMR spectroscopy for ammonium cation.
Approach
Oxidation Stability of 9MeTTP⁺

Test conditions: 10 mM as test cation concentration, 0.3 M Ce(IV)(ClO₄)₄ containing 0.1 M HClO₄ as test cerium electrolyte, 20 °C as test temperature, and 12 h as test time. (A) BTMA⁺-containing solution sample before the stability test (left) and after the test (right). (B) 9MeOTTP⁺-containing solution sample before the stability test (left) and after the test (right). (C) 9MeTTP⁺-containing solution sample before the stability test (left) and after the test (right).
Stability test of polymer membranes:

The weight of dry PSf membrane (W_1, g) was measured first, and then the membrane was immersed in 0.5 M Ce(IV)(ClO$_4$)$_4$ solution at 40 °C. After 500 h and 1000 h, the membrane was taken out and washed with DI water several times to remove the residual salts. The weight of the membrane (W_2, g) was measured after drying under vacuum at 80 °C for 24 h. The weight loss (WL) of membrane was calculated by:

$$WL(\%) = \left(\frac{W_1 - W_2}{W_1}\right) \times 100\%$$

Table:

<table>
<thead>
<tr>
<th></th>
<th>Weight loss (%) at 500 h</th>
<th>Weight loss (%) at 1000 h</th>
<th>Morphography change</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>PPO</td>
<td>10</td>
<td>30</td>
<td>Cloudy and Brittle</td>
</tr>
<tr>
<td>PSf</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>PEEK</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>6FPBI</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>
Accomplishments and Progress
Proposed Direct Quaternization through Central Phosphorus Atom

(PSf)

(ICPSf)

(9MeTTPICPSf)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Molar ratio (phosphine/polymer)</th>
<th>Solvent</th>
<th>Time</th>
<th>Degree of quaternization</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °C</td>
<td>2</td>
<td>CHCl₃</td>
<td>5 h</td>
<td>0</td>
</tr>
<tr>
<td>80 °C</td>
<td>2</td>
<td>ClCH₂CH₂Cl</td>
<td>5 h</td>
<td>0</td>
</tr>
<tr>
<td>80 °C</td>
<td>5</td>
<td>ClCH₂CH₂Cl</td>
<td>24 h</td>
<td>0</td>
</tr>
<tr>
<td>120 °C</td>
<td>2</td>
<td>Cl₂CHCHCl₂</td>
<td>5 h</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Molar ratio (phosphine/polymer)</th>
<th>Solvent</th>
<th>Time</th>
<th>Degree of quaternization</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 °C</td>
<td>2.5</td>
<td>CHCl₃</td>
<td>12 h</td>
<td>0</td>
</tr>
<tr>
<td>60 °C</td>
<td>2.5</td>
<td>CHCl₃</td>
<td>12 h</td>
<td>0</td>
</tr>
<tr>
<td>80 °C</td>
<td>2.5</td>
<td>ClCH₂CH₂Cl</td>
<td>12 h</td>
<td>0</td>
</tr>
</tbody>
</table>
Accomplishments and Progress
New Proposed Synthetic Strategy for Attaching 9MeTTP⁺ Cation to PSf

\[
\text{CH}_3\text{I} \quad \text{THF}, \text{ r.t.}, 24 \text{ h} \\
\begin{array}{c}
\text{PA, TMSCl, SnCl}_4 \\
\text{PA, TMSCl, SnCl}_4 \\
\text{NBS, BPO}
\end{array}
\]

\[
\text{CHCl}_3, 55 \degree \text{ C}, 96 \text{ h} \\
\begin{array}{c}
\text{C}_4\text{H}_9\text{NH}_2, \text{ Cs}_2\text{CO}_3 \\
\text{NMP}, \text{ r.t.}, 72\text{ h} \\
\text{NMP}, \text{ r.t.}, 72\text{ h}
\end{array}
\]

\[
\begin{array}{c}
\text{THF, r.t., 24 h} \\
\text{TCE, 140 \degree \text{ C}, 24 \text{ h}} \\
\text{BAPSF, DA = 90%}
\end{array}
\]

\[
\begin{array}{c}
\text{NMP, r.t.}, 72\text{ h} \\
\text{CS}_2\text{CO}_3 \\
\text{CS}_2\text{CO}_3
\end{array}
\]

\[
(\text{CMPSF, DC = 90%})
\]

\[
(\text{BAPSF, DA = 90%})
\]

\[
(\text{9MeTTPPSF, DS = 90%, IEC = 0'9 mmol/g})
\]
Accomplishments and Progress
Bromination of 9MeTTP\(^+\) cation investigation

<table>
<thead>
<tr>
<th>Entry</th>
<th>9MeTTP(^+) (mmol)</th>
<th>NBS(^a) (mmol)</th>
<th>BPO(^b) (mmol)</th>
<th>TCE(^c) (ml)</th>
<th>T (°C)</th>
<th>Time (hour)</th>
<th>DB(^d) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.05</td>
<td>10</td>
<td>80</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.05</td>
<td>10</td>
<td>140</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.05</td>
<td>10</td>
<td>140</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.5</td>
<td>0.15</td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.5</td>
<td>0.15</td>
<td>20</td>
<td>80</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.2</td>
<td>12</td>
<td>140</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>0.3</td>
<td>10</td>
<td>140</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3</td>
<td>0.3</td>
<td>3</td>
<td>140</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>5</td>
<td>0.5</td>
<td>12</td>
<td>140</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5</td>
<td>0.5</td>
<td>10</td>
<td>140</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>5</td>
<td>0.5</td>
<td>3</td>
<td>140</td>
<td>24</td>
<td>100</td>
</tr>
</tbody>
</table>

- a. N-Bromosuccinimide (NBS) was used as bromination reagent;
- b. Benzoyl peroxide (BPO) was used as radical initiator;
- c. Tetrachloroethane (TCE) was used as solvent;
- d. Degree of total bromination.

\(^{1}H\) NMR, CDCl\(_3\) solvent

\(^{1}H\) NMR, DMSO solvent
Accomplishments and Progress
Bromination of 9MeTTP⁺ cation result

• In ¹H NMR spectrum, the peak at 4.71 ppm indicate the methylene group adjacent to bromine and benzene. The degree of bromination (DB) is calculated from the ¹H NMR spectrum as the following equation:

\[\text{DB} = \frac{3A_5}{2A_4} \times 100\% \]

• In ³¹P NMR spectrum, there are two peaks indicate mono-brominated 9MeTPP⁺ cation and non-brominated 9MeTPP⁺ cation respectively. The integration ratio of these 2 peaks is approximately 1:2, which is consistent with the 33% DB. No signal of the multiple brominated 9MeTPP⁺ cation can be found.
Accomplishments and Progress
9MeTTP⁺ - functionalized polymer

1H NMR

31P NMR

IR

1700 cm⁻¹ P-Ar stretching

1670 cm⁻¹ P-Ar stretching

TOPO

9MeTTPPSf

DMSO

H₂O

CMPSf

BAPSF

Br9MeTTP⁺

9MeTTPPSf

Wavenumber (cm⁻¹)

2500 2400 2300 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

12 1, 6-11 5 14 4 3 15 2 13 17 18

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

1, 6-11 5 14 4 3 15 2 13 17 18

Accomplishments and Progress
BAPSf membrane oxidation stability test

BAPSf \(\text{DA} = 90\% \); \(\text{IEC} = 1.6 \text{ mmol/g} \)

<table>
<thead>
<tr>
<th></th>
<th>Weight loss (%) at 500 h</th>
<th>Weight loss (%) at 1000 h</th>
<th>Morphography change</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>PPO</td>
<td>10</td>
<td>30</td>
<td>Cloudy and Brittle</td>
</tr>
<tr>
<td>PSf</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>PEEK</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>6FPBI</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>200 h</th>
<th>400 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAPSf (IEC = 1.6)</td>
<td>~10% degradation in H NMR break</td>
<td></td>
</tr>
</tbody>
</table>

BAPSf \(\text{IEC} = 1.6 \text{ mmol/g} \) in 0.3 M \(\text{Ce(ClO}_4\text{)}_4 \) and 0.1 M \(\text{HClO}_4 \)
Accomplishments and Progress

9MeTTP⁺ - functionalized polymer based on 6FPBI backbone

\[
\text{Br9MeTTP⁺ synthesized} \quad \text{(9MeTTPPBI yet to be synthesized)}
\]
Collaborations

<table>
<thead>
<tr>
<th>Institutions</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Delaware: Yushan Yan (PI), Shuang Gu, Bingjun Xu</td>
<td>Prime; Oversees the project, lead AEM synthesis and characterization</td>
</tr>
<tr>
<td>National Renewable Energy Laboratory (NREL): Bryan Pivovar (PI)</td>
<td>Sub; Test membrane durability and prepare MEA and MEA testing</td>
</tr>
</tbody>
</table>
Future Work/Remaining Challenges

9MeTTP$^+$ Bromination:

- Increase the degree of single bromination
- Avoid multiple bromination product in large scale synthesis

Polymer Backbone:

- Overcome compromised oxidation stability due to hydrophilic functional groups

Membrane Casting:

- Address the brittle membrane due to crosslinking and large sized 9MeTTP$^+$ cation

RFB/Fuel Cell Testing:

- Test 9MeTTP$^+$ - functionalized polymer membranes in RFB/Fuel Cell
Summary

• **Relevance:** Developing highly stable anion-exchange membranes for high-voltage redox-flow batteries.

• **Approach:** Developing anion-exchange membrane based on 9MeTTP\(^+\) cation.

• **Accomplishments and Progress:** The project has explored multiple chemistries for connecting 9MeTTP\(^+\) to a commercial polymer backbone. The direct quaternization method through central phosphorus atom has been proved to be infeasible due to the high steric hindrance of the 9MeTTP molecule. We have devised a new synthesis strategy through brominated 9MeTTP\(^+\) cation, and obtained the desired 9MeTTP\(^+\)-functionalized polysulfone. In order to further improve the oxidation stability of the polymer, a 9MeTTP\(^+\)-functionalized 6FPBI polymer is under investigation.

• **Collaborations:** We have obtained some new polymers from RPI that might be stable toward oxidation.

• **Future Research:** Focus on improving the conversion of the bromination of 9MeTTP\(^+\); improve the membrane property; and explore other MeTTP\(^+\) that may be more conducive to mono-bromination with high conversion.
Technical Backup Slides
Accomplishments and Progress
Bromination of 9MeTTP\(^+\) cation

\(^1\)H NMR, DMSO solvent, enlarged of NMR in page 11

[Diagram of molecular structures with 67% and 33% yields]

DMSO

H\(_2\)O
Accomplishments and Progress
Bromination of 9MeTTP⁺ cation

³¹P NMR, DMSO solvent, enlarged of NMR in Page 12

9MeTTP⁺

Mono-Br 9MeTTP⁺

H₃PO₄
Accomplishments and Progress
Bromination of 9MeTTP+ cation result

$^{31}\text{P} \text{ NMR, DMSO solvent, enlarged of NMR in Page 12}$

$^{31}\text{P} \text{ NMR, DMSO solvent}$
Accomplishments and Progress
9MeTTP\(^+\) - functionalized polymer

\(^1\)H NMR, DMSO solvent, enlarged of NMR in Page 13

\[
\begin{align*}
\text{H}_2\text{O} & \quad 1.00 \\
\text{DMSO} & \quad 1.01
\end{align*}
\]
Accomplishments and Progress
9MeTTP$^+$ - functionalized polymer

IR of CMPSf, BAPsf, Br9MeTTPI, and 9MeTTPPSf, full spectrum of IR in page 13

- 1700 cm$^{-1}$ P-Ar stretching
- 1670 cm$^{-1}$ P-Ar stretching