Overview Project [DE-EE0006965]

- **Timeline:**
 - Start date: 7/01/2015
 - End date: 8/31/2017

- **Budget Data:** Total Project Value: $ 1,029,493 (Federal), $ 257,373 (cost share); Total $ 1,286,866
- **Cost Share Percentage:** 20%

- **Barriers/Targets (Addresses both ‘Cost’ and ‘Durability’)**
 - **Key Barriers:** Current state of the art PAFC imbibed systems use 3-5 mg PGM/cm² amounting to $ 750-1000/KW in noble metal cost. Other issues relate to elevated mass transport losses due to six fold lower O₂ permeability and proton conduction compared to perfluorinated proton conducting membrane.
 - **Activity Targets:** for Non-PGM catalysts (BP-1): Areal Activity (Air): 200 mA/cm² at 0.6 V, 2.5 bar total pressure with PGM content (anode) lower than 1.5 mg/cm² (go/no go point).
 - **Durability Target:** at temperatures ≤ 180°C, Non-pgm catalysts subjected to OCV test for 3 hrs with less than 3% loss at 0.65 V. Chronoamperometric test at 0.8 V for 48 hrs with less than 3% loss at 0.65 V.

- **Partners**
 - **Northeastern University, (Prime) Boston, MA:** S. Mukerjee (P.I)
 - **The University of New Mexico, (Sub-awardee) Albuquerque, NM:** Prof. P. Atanassov (Co-P.I)
 - **Pajarito Powder, LLC, (Sub-awardee) Albuquerque, NM:** Dr. B. Halevi (Co-P.I)
 - **Fuel Cell Energy, Inc. (Sub-awardee) Danbury, CT:** Dr. L. Lipp (Co-P.I)
 - **Advent Technologies, Inc. (special materials supplier/vendor):** Cambridge, MA: Dr. E. De Castro
Objectives: To investigate the use and development of non-PGM electrocatalysts that would allow for high performance in high-temperature proton exchange membrane fuel cells. The performance targets that should be met and exceeded are 100mA/cm² @ 700mV (H₂/O₂, 1.5bar total pressure) & 200mA/cm² @ 600mV (H₂/air, 2.5bar total pressure).

Relevance to DOE Mission: This will enable HT-PEM technology to be less dependant on Pt resource availability and lower MEA costs by at least 50%.
 - Significant changes in energy efficiency, carbon footprint, and United States energy security

Impact
 - Current high Pt loading costs $750-1000/KW
 - Reduction of unit cost from $30-50k to <$10k for micro combined heat and power devices (micro-CHP).
 - Independence from Pt and other precious metal global availability
 - Greater tolerance to poisons which typically effect Pt & Pt alloys (i.e., sulfur, CO, phosphate, etc.), Hence ability to tolerate H₂ with greater impurity.
Overall Approach

• **Overall technical approach:**
 - **New Catalyst development and scale up strategies:**
 - Iron-Nitrogen-Carbon based active sites embedded in a MOF structure
 - Scale up through unique reactive ball milling approach
 » Simultaneous ball milling of all precursors (Fe salt, chelating agent, Zn nitrate, imidazole)
 - Improvement of mass transport and corrosion resistant characteristics
 - Through use of sacrificial support method (SSM) using TaC_x and WC_x
 - Enhanced understanding of mass transport through modeling and mass transport experiments (Hel-ox)
 - Low concentration oxygen gases used for evaluating mass transport parameters
 - **Single cell fabrication and testing**
 - For elucidating performance as well as durability/corrosion resistance information

• **Program Technical Barriers and Approach to Overcome them:**
 - Meeting and Exceeding Program targets of 100mA/cm² @ 0.7V (H₂/O₂, 1.5bar total pressure) & 200mA/cm² @ 0.6V (H₂/air, 2.5bar total pressure).
 - (a) New classes of materials due to current high precious metal loadings (2-4mg/cm²), which cause precious metal costs of $750-1000/KW
 - (b) Redesign of the catalyst support and Electrode Structure for efficient mass transport.
 - High mass transport losses due to lower O₂ (5x) and proton (6x) permeability
 - (b) Developing materials to avoid phosphate poisoning effects present with precious metals
Milestone Summary Table

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Task or Subtask Title</th>
<th>Milestone Type</th>
<th>Milestone or Go/No Go Decision Point</th>
<th>Milestone Description (Go/No-go Decision Criteria)</th>
<th>Milestone Verification Process</th>
<th>Anticipated Quarter Date</th>
<th>Anticipated Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Catalyst Preparation and scale up with MOF chemistry.</td>
<td>Milestone</td>
<td>M1.1a</td>
<td>Develop scale up chemistry based on reactive ball milling for achieving 5 gm batch of MOF-based non-PGM cathode catalyst material.</td>
<td>Less than 5% inter and intra batch variation in in RDE performance using 0.1 M HClO₄ with up to 100 mM H₃PO₄.</td>
<td>3 mo</td>
<td>Q 1</td>
</tr>
<tr>
<td>1.1</td>
<td>Catalyst Preparation and scale up with MOF chemistry.</td>
<td>Milestone</td>
<td>M1.1b</td>
<td>Demonstrate initial MEA activity of non-PGM cathode catalyst with PA-imbibed membrane.</td>
<td>Polarization measurements demonstrating 100 mA/cm² at 0.7 V using H₂/O₂ at 180°C 1.5 bar total pressure.</td>
<td>6 mo</td>
<td>Q 2</td>
</tr>
<tr>
<td>2.1</td>
<td>Improving Mass Transport Characteristics.</td>
<td>Milestone</td>
<td>M2.1</td>
<td>MEA testing of SSM-templated non-PGM catalyst.</td>
<td>MEA performance of 200 mA/cm² at 0.65 V, H₂/Air, 180°C, 2.5 bar total pressure.</td>
<td>9 mo</td>
<td>Q 3</td>
</tr>
<tr>
<td>1.2</td>
<td>Scale up of catalysts based on MOF approach.</td>
<td>Milestone</td>
<td>M1.2</td>
<td>Scale up of MOF-based non-PGM catalyst to 30-50 gm batch size.</td>
<td>Less than 5% inter and intra batch variation in RDE and MEA performance (H₂/Air)</td>
<td>12 mo</td>
<td>Q4</td>
</tr>
<tr>
<td>Go/No-Go Decision</td>
<td>Go/No-Go Decision</td>
<td>GNG 1</td>
<td>Fuel cell measurements and validation.</td>
<td>At least 200 mA/cm(^2) at 0.60 V with 2.5 bar total pressure, H(_2)/air, 180(^\circ)C. Total PGM catalyst loading on the PA-imibbed membrane-based MEA to be lower than 1.5 mg/cm(^2) Pt exclusive to the anode electrode with a non-PGM cathode.</td>
<td>12 mo</td>
<td>End of Q4</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Durability studies</td>
<td>Milestone</td>
<td>M1.4a</td>
<td>Durability testing on scaled up samples based on reactive ball milling (30-50 gm batch). MEA performance of 200 mA/cm(^2) at 0.6 V, H(_2)/air, 180(^\circ)C, 2.5 bar total pressure. Chronoamperometric testing at 0.8 V (H(_2)/air) 2.5 bar total pressure (180(^\circ)C) with 5 % activity loss over 48 hrs.</td>
<td>18 mo</td>
<td>Q5</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Durability studies</td>
<td>Milestone</td>
<td>M2.3a</td>
<td>Corrosion testing of SSM based materials from sub-task 2,3 Open circuit test on SSM based materials at 180(^\circ)C, H(_2)/air conditions for 3 hrs with activity loss of less than 3% at 0.65 V (2.5 bar total pressure).</td>
<td>21 mo</td>
<td>Q6</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Final down select</td>
<td>Milestone</td>
<td>M3.3a</td>
<td>Down select of scaled up integrated material containing FE-MOF based active site, SSM based microporous layer on GDL structures Achieving H(_2)/Air performance target of 200 mA/cm(^2) at 0.65 V, 180(^\circ)C, 2.5 bar absolute pressure.</td>
<td>24 mo</td>
<td>Q7</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Fuel cell test validation</td>
<td>Milestone</td>
<td>M3.2b</td>
<td>Fuel cell test validation at OEM partner facility with 100 cm(^2) MEA using PA-imibbed membrane and non-PGM cathode catalyst. Achieving H(_2)/Air performance target of 200 mA/cm(^2) at 0.65 V, 180(^\circ)C, 2.5 bar total pressure</td>
<td>24 mo</td>
<td>Q8</td>
<td></td>
</tr>
</tbody>
</table>
Key Barriers and Motivation

- Successfully commercialized for stationary power applications
- 10 year stack life and 20 year product life
- Operates at ~150-200°C
- 81% total CHP efficiency
- 90-100% Phosphoric Acid electrolyte
 - Durable Membranes Available
- Pt-based catalyst for anode and cathode

Cost and Performance Characteristics

<table>
<thead>
<tr>
<th></th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
<th>System 4</th>
<th>System 5</th>
<th>System 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Cell Type</td>
<td>PAFC</td>
<td>PEM</td>
<td>PEM</td>
<td>MCFC</td>
<td>MCFC</td>
<td>SOFC</td>
</tr>
<tr>
<td>Nominal Electricity Capacity (kW)</td>
<td>200</td>
<td>10</td>
<td>200</td>
<td>300</td>
<td>1200</td>
<td>125</td>
</tr>
<tr>
<td>Commercial Status 2007</td>
<td>Com'l</td>
<td>Demo</td>
<td>Com'l</td>
<td>Com'l</td>
<td>Demo</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature (°C)</td>
<td>400</td>
<td>150</td>
<td>150</td>
<td>1200</td>
<td>1200</td>
<td>1750</td>
</tr>
<tr>
<td>Package Cost (2007 $/kW)</td>
<td>4,500</td>
<td>8,000</td>
<td>n.a.</td>
<td>4,000</td>
<td>3,870</td>
<td>n.a.</td>
</tr>
<tr>
<td>Total Installed Cost (2007 $/kW)</td>
<td>6,310</td>
<td>9,100</td>
<td>n.a.</td>
<td>5,580</td>
<td>5,250</td>
<td>n.a.</td>
</tr>
<tr>
<td>O&M Costs (2007 $/kW)</td>
<td>0.038</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.035</td>
<td>0.032</td>
<td>n.a.</td>
</tr>
<tr>
<td>Electric Heat Rate (Btu/kWh)</td>
<td>9,480</td>
<td>11,370</td>
<td>9,750</td>
<td>8,022</td>
<td>8,022</td>
<td>8,024</td>
</tr>
<tr>
<td>Electrical Efficiency (percent HHV)</td>
<td>33%</td>
<td>30%</td>
<td>35%</td>
<td>43%</td>
<td>43%</td>
<td>43%</td>
</tr>
<tr>
<td>Fuel Input (MMBtu/hr)</td>
<td>1.9</td>
<td>0.1</td>
<td>2</td>
<td>2.4</td>
<td>9.6</td>
<td>1.00</td>
</tr>
</tbody>
</table>

CHP Characteristics

<table>
<thead>
<tr>
<th></th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
<th>System 4</th>
<th>System 5</th>
<th>System 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Avail. >160°F (MMBtu/hr)</td>
<td>0.375</td>
<td>0</td>
<td>0</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Heat Avail. <160°F (MMBtu/hr)</td>
<td>0.475</td>
<td>0.04</td>
<td>0.72</td>
<td>0.48</td>
<td>1.9</td>
<td>0.34</td>
</tr>
<tr>
<td>Heat Output (MMBtu/hr)</td>
<td>0.850</td>
<td>0.04</td>
<td>0.72</td>
<td>0.48</td>
<td>1.90</td>
<td>0.34</td>
</tr>
<tr>
<td>Heat Output (kW equivalent)</td>
<td>249.0</td>
<td>11.7</td>
<td>211.0</td>
<td>140.6</td>
<td>556.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total CHP Efficiency (percent), HHV</td>
<td>81%</td>
<td>65%</td>
<td>72%</td>
<td>62%</td>
<td>62%</td>
<td>77%</td>
</tr>
<tr>
<td>Power/Heat Ratio</td>
<td>0.80</td>
<td>0.85</td>
<td>0.95</td>
<td>2.13</td>
<td>2.16</td>
<td>1.25</td>
</tr>
<tr>
<td>Net Heat Rate (Btu/kWh)</td>
<td>4,168</td>
<td>6,370</td>
<td>5,250</td>
<td>6,022</td>
<td>6,043</td>
<td>4,611</td>
</tr>
<tr>
<td>Effective Electrical Eff (percent), HHV</td>
<td>81.90%</td>
<td>53.58%</td>
<td>65.01%</td>
<td>56.67%</td>
<td>56.48%</td>
<td>74.02%</td>
</tr>
</tbody>
</table>

Source: EEA/ICF
Running Hot and Dry: Poor Proton Conductivity and Oxygen Permeability in PA Systems

<table>
<thead>
<tr>
<th>Conductivity (S/cm)</th>
<th>λ $\text{H}_2\text{O}/\text{SO}_3$</th>
<th>$D \times 10^6$ cm2/S</th>
<th>$C \times 10^6$ mol/cm3</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafion*</td>
<td>0.12</td>
<td>12.5</td>
<td>5.51</td>
<td>9.42</td>
</tr>
</tbody>
</table>

*Nafion Membrane: 100% humidified

Balance of Plant

CO Tolerance: < 2% above 160°C
S Tolerance: 100 ppm
No need for Prox unit

Power Density

~ 400 mW/cm2 at 0.65 V, H$_2$/Air
Nafion: 1.1 W/cm2
Pt Reference Data with Advent TPS Membrane

Backpressure-dependent Performance, O₂

![Graph of Fuel Cell Performance](image)

- Anode/Cathode: 1.59mg Pt/cm², 50% PTFE
- Electrodes made at NEU
- 400sccm H₂, 400sccm O₂
- Advent TPS Membrane, 300% doping

H₂ / O₂ Overpotential analysis at 180°V & 1.5bar total pressure

![Graph of Overpotential Analysis](image)

- Blue = Raw
- Red = iR-free
- Green = iR & Mass Transport-free

Breakdown of Losses

![Graph of Tafel Plot, iR-free](image)

- Anode/Cathode: 1.59mg Pt/cm², 50% PTFE
- Electrodes made at NEU
- 400sccm H₂, 400sccm O₂
- Advent TPS Membrane, 300% doping
Phosphate Anion

Materials Design Strategy: Evolution of Different Approaches in Budget Period 1... Continued

- **Mechano-Chemical Approach (UNM)**

 - **Nicarbazin**

 \[
 \begin{align*}
 &\text{H}_2\text{C} & \text{N} & \text{H} & \text{N} & \text{N} \\
 &\text{O} & \text{N} & \text{O} & \text{N} & \text{N} \\
 &\text{H}_3\text{C} & \text{CH}_3 & \text{H}_2\text{C} & \text{N} & \text{N} \\
 &\text{H}_2\text{N} & \text{N} & \text{N} & \text{N} & \text{N} \\
 &\text{O} & \text{N} & \text{O} & \text{N} & \text{N} \\
 &\text{H}_2\text{O} & \text{N} & \text{N} & \text{N} & \text{N}
 \end{align*}
 \]

 + Fe-Salt + Silica templated

 \[
 \text{Nicarbazin} \quad \text{UNM-CTS}
 \]

- **N-Chelating Precursor-Metal Salt Approach (UNM)**

 - **Aminoantipyrine**

 \[
 \begin{align*}
 &\text{H}_2\text{N} & \text{N} & \text{N} & \text{N} & \text{N} \\
 &\text{O} & \text{N} & \text{O} & \text{N} & \text{N} \\
 &\text{H}_3\text{C} & \text{CH}_3 & \text{H}_2\text{N} & \text{N} & \text{N} \\
 &\text{O} & \text{N} & \text{O} & \text{N} & \text{N} \\
 &\text{H}_2\text{O} & \text{N} & \text{N} & \text{N} & \text{N}
 \end{align*}
 \]

 + Fe-Salt + Silica templated

 \[
 \text{Aminoantipyrine} \quad \text{UNM-CTS}
 \]

- **Metal Organic Framework Approach: (NEU)**

 - **Zn(NO_3)_2 \cdot 6H_2O**

 \[
 \begin{align*}
 &\text{N} & \text{N} & \text{N} \\
 &\text{H}_2\text{N} & \text{N} & \text{N} & \text{N} \\
 &\text{O} & \text{N} & \text{O} & \text{N} & \text{N} \\
 &\text{H}_2\text{O} & \text{N} & \text{N} & \text{N} & \text{N} \\
 &\text{H}_2\text{C} & \text{N} & \text{N} & \text{N} \\
 &\text{O} & \text{N} & \text{O} & \text{N} & \text{N}
 \end{align*}
 \]

 + Fe(NO_3)_3, DMF, 140°C, 120 h

 \[
 \text{UNM-Fe-MOF}
 \]

- **MOF + Encapsulated N-Precursor and Metal Salt**

 \[
 \begin{align*}
 &\text{MOF} + \text{Encapsulated N-Precursor and Metal Salt} \\
 &\text{NEU-Fe-MOF}
 \end{align*}
 \]

[1] M=Fe, Co; X=C_2H_3O_2, Cl
[2] @ indicates chemical encapsulation of phenanthroline and metal (M-N active site)
Metal Salt Encapsulation

\[
\text{FePhen@MOF-SR}
\]

FePhen@MOF-SR

FePhen@MOF-ArNH₃

Basolite-ArNH₃

Iron Carbide

Iron Carbide Nitride

Iron

Current Density (mA cm⁻²)

Potential (V) vs RHE

*Iron-Free Synthesis

Acid

Alkaline

50 nm

0.209 nm
Fe-CTS Modification for Air and Scale Up

- UNM SSM method Fe-CTS catalyst porosity modified for air operations and scaled to 200 gram per batch.
Fe-MOF tech Transfer and Scale Up

- Key process steps and variables established and being adjusted for x20 scale
- Promising performance of initial x10 batches established
Two major active sites identified by *in situ* XAS

The two major types of active sites in heat-treated Fe-N-C catalysts can be clearly distinguished by *in situ* XAS. The local geometry, and relative content of each site can be quantitatively determined by EXAFS fitting. This information facilitates to have controls over the content of the catalysts by controlling the precursors and the preparation procedures.
57Fe Mössbauer Spectroscopy

Spectroscopic observations of the chemical moieties

UNM Fe-AApyr catalyst

UNM Fe-Nicarbazin catalyst

NEU-MOF
Anion Adsorption

Theoretical

- Plot showing energy relative to Fe K edge (eV) for Fe NPs.
- Plot showing energy relative to Pt L₃ edge (eV) for Pt NPs.

Experimental

- Graph showing normalized μ(E) for FePhen@MOF-ArNH₃ with 0 mM H₃PO₄ and 100 mM H₃PO₄.
- Micrograph with a scale bar of 10 nm.
RDE Phosphate Poisoning

Pt (111)
Qinggang He et al, Physical Chemistry Chemical Physics 2010

Pt/C

MOF Solid State Reaction (MOF-SSR, 30g batch size)

MOF Solution Reaction (MOF-SR)
\(\text{H}_2/\text{O}_2 \ 180^\circ\text{C}, \text{TPS Membrane (Advent)} \)

- Had to go to elevated backpressure (2.5bar total) to achieve DoE oxygen performance target due to flooding issues
- Flooding issues being addressed through new MEA preparation in conjunction with Advent Technologies
New MEA formulation is being explored:
- Previous method did not include the presence of a binder within the cathode catalyst layer
 - Led to flooding of the catalyst layer, causing stability issues
Previously-mentioned stability issues due to lack of binder were exacerbated in air (250mV O₂ gain @ 200mA/cm²)
- New data should be available in immediate future with new formulation
 - This should alleviate Polarization losses and make up necessary ground to DoE target

Breakdown of Losses

- iR losses
- Total Polarization Losses
- MT losses

Polarization losses are 200mV high than in oxygen due to flooding
• **Task 1.1 Catalyst Preparation and Scale Up with MOF Chemistry:** Inter and Intra batch variability and phosphate immunity demonstrated on MOF scale up catalysts for 5g batch size
 – Single cell testing in oxygen demonstrating 100mA/cm² @ 0.7V & 2.5bar total pressure
 • Established target was at 1.5bar total pressure
 – Current changes in MEA preparation being implemented should allow for achievement of DoE target

• **Task 2.1 Improving Mass Transport Characteristics**
 – Single cell testing in air demonstrating 200mA/cm² @ 0.6V & 2.5bar total pressure
 • Currently 100mV from achieving target
 – Again, changes currently being implemented should resolve discrepancy
Major re-design of MEA fabrication techniques with input from Advent Technologies in order to transition from Pt to non-pgm

- TPS & PBI membrane require very different methodologies for preparation
 - Teflon content
 - Optimizing content given much higher loading of non-pgm than Pt in typical MEA
 - Electrode and MEA annealing steps
 - Need much more fine-tuned control of temperature than previously had with muffle furnace
 - Multistep process in order to properly remove GDL/GDE additives
- Adjustments made to hot-pressing techniques
 - Previous method was likely too much pressure, facilitated flooding from over-compression, which subsequently led to major issues with testing in air & performance degradation
 » New technique will allow for specific % compression of MEA in order to prevent over-compression
- These adjustments should cause significant improvement in stability and initial performance, allowing for achievement of DoE targets
Collaborations

Partners (this project)

• Northeastern Univ., (Prime) Boston, MA: S. Mukerjee (P.I)
• The Univ. of New Mexico, Albuquerque, NM: P. Atanassov (Univ., sub-contractor)
• Pajarito Powder, LLC, Albuquerque, NM: B. Halevi (Industry, sub-contractor)
• Fuel Cell Energy, Inc., Danbury, CT: L. Lipp (Industry sub-contractor)
• Advent Technologies, Inc., Cambridge, MA: (Industry, special materials supplier): E. De Castro

Other collaborators:
Jean-Pol Dodelet: Canetique, Inc., Canada
Frederic Jaouen, University of Montpelier, France
Critical Assumptions and Issues

• XAS data used for building active site models are based on assumptions inherent in the FEFF code. Careful control experiments have been used to validate the reported results.

• All iR corrections performed on fuel cell data was conducted using high frequency resistance measurements at 1 kHz.