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FC-PAD Overview & Cross cutting thrusts
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® Three thrusts:

& Components: catalysts, electrodes

and ionomer/GDLs GDLs Interfaces

& Crosscutting: modeling, evaluation
and characterization
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FC-PAD Thrust 3: Overview

Timeline

Project start date: 10/01/2015
Project end date: 09/30/2016

National Labs

NREL, ANL, LBNL, LANL, ORNL

Partners/Collaborations

(To Date Collaborations Only)
Tufts University

U. Delaware
PSI

3M
Colorado School of Mines

Partners to be added by DOE DE-FOA-
0001412

Barriers

The ionomer presents challenges in
terms of performance and durability

* Membrane durability additive
movement is unknown

* Local losses associated with
ionomer thin films

Water and thermal management,
especially at lower temperatures

Impact of interfaces and their
optimization




Approach: Fuel-Cell Components

............................................................................................................................................................................................................................................................................................................................

lonomer membranes (PEM) ~ Gas Diffusion Layers (GDLs)
In-situ/ex-situ diagnostics Transport and 3D-structure (imaging)
structure-property characterization Water and thermal management
Degradation Phase-change kinetics

Reinforcement and Additives

lonomer Thin Films (CL) Interfaces
lonomer-substrate interactions and Water and thermal management
thickness effects (confinement) GDL/Channel and droplets
Transport properties CL/MPL and flooding
Formation

Operando, modeling, and ex-situ
diagnostics to elucidate governing

behavior and optimize
performance and durability




AcCcomplisnments:
lonomer Dispersions — Processing of PFSA

® lonomer dispersions (USAXS)

» Data indicate that particles size is
positively correlated with ionomer
content in dilute solutions (1-5 wt%)

® lonomer dispersions
» Understanding the underlying ink
structure enables facile and controlled
manufacturing processes for tunable
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Accomplisnments:
lonomer Dispersions — Solvent Effect

lonomer (F map) Area %
NMP 29.5%

[ ke r\)}.‘ Pt I =%

32.6%

+

H,O0/IPA 28.9% Glycerol

® Electrode morphology

& conventional vs. LANL's technologies
» Element mapping indicates that Pt

electrocatalysts are more uniformly onomer Dispersion
distributed in the LANL-developed
electrodes

LANL’s lonomer
Dispersion

CPA
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AcCcomplisnments:
lonomer Thin Films — Impact of EW/Chemistry

® Anisotropy increases for thin films ® Phase-separation diagram
due to confinement

% Generated from a large structure/
& Domains are closer and better- swelling dataset on PFSAs

packed in thickness direction % Thickness-EW interplay in thin films

% Impacts transport behavior > Shorter side-chain and/or lower EW
demonstrate stronger phase separation

Phase—Separation Dlagram for PFSA | In-plane FWHM

PFSA lonomer at 100% RH
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AcCcomplisnments:
Membrane — Impact of Ageing and Contamination ,

$ H th | ) lonic group condensation Less ionic groups + high modulus =
ygrothermal ageing =>» Crosslinks =» higher modulus  less water uptake
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AcCcomplisnments:
Membrane — Cerium Migration and Washout _
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® XRF studies demonstrate that cerium
& Moves with proton flux more so than with potential gradients

& In plane profiles reveal very different cerium migration profiles
» 100% RH: cerium gradient follows humidified gasses from inlet to outlet
» 30% RH: diffusion drives uniform migration
> Wet/dry cycling: significant reduction in PEM cerium with in-plane gradient

CrPA
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AcCcomplisnments:
Membrane — Cerium Mlgrat on and Washout

® Cerium is an effective radical
scavenger, but it is mobile in
operating cells

(30s wet/45s dry)

Degradation P

% Key is to understanding migration = 1.5 as PEM Ce
and washout mechanisms E
. &
» Implications for performance loss and F::' 1 30% RH
radical scavenging o
% Cerium migration from PEM 0.5
increases degradation 100% RH
. : : 0
& Cerium migrates into the CLsas a 0 1 5 3 a s 6 ; g
byprOdUCt of degradatlon Final cerium concentration in PEM (ug/cm2)

20

[y
(92

* Cerium and fluoride release are correlated

* Cerium maybe released from the MEA as
part of side-chain polymer fragment

CE cum (ng/cm2)
[ERN
o

w

o

200 400 600 800
Time (h)

o

CE_,, = cumulative cerium emissions
FE.,,, = cumulative fluoride emissions
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AcCcomplisnments:
Membrane — Nafion XL Composite Membranes

HAADF-STEM image of cross-sectioned MEA with Nafion XL membrane

® Strong anisotropy in Nafion XL

% Conductivity
> N212: Preboiled > As Received B | | o
> XL: Preboiled > As Received (in the plane) o Eﬂ?ﬁmﬁ;m ‘,P‘”’”C’es:
> XL: Preboiled < As Received(thickness)

's

% Opposite trends for modulus

cathode Nafion + Silica EPTFE-rich reinforcement . Nafion + SRl anode

® Dramatic impact of conditioning catalyst =" 5 —~ . catalst
layer < » layer
Nafion XL membrane
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AcCcomplisnments:
Interface — Membrane Interfacial Resistance

1.

e, R[s/'em]

Interfacial Resistanc

® All PFSA ionomers exhibit large interfacial resistance
% Increases with lower humidity and shorter side chain
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[=]
[=]
s

S
® Interfacial resistance dominates transport response g =
£ 60
& Larger fraction at lower temperature S 40
. . . g * 20
% Larger fraction at higher humidity o
€
Y 2
= 2x10° 18
) 15
E 1.4
'§ 14 1.2
o 1
5 ol
E -§100
A, v 80
6x107 @/6‘?‘-" g 60
O}{l'f,?/ym ™ 825»"-\Eqwu|\.r|0n E98 L
fo/oj Nafion 0

04 -
3 4

Water Content, A+ires [H,0/S0;]

CrPA

FUEL CELL PERFORMANC]
AND DURABILITY




Accomplisnments:

® Examine impact of interfacial blockage
% Due to manufacturing or water pooling

PlIEM CL__MPL DL

.

HH
m B

Channel

CL| MPL 0.05 0.10 0.15 0.20 0.25 0.30

Waterfilled interface Fraction of cross section area occupied by water filled interface

Water filled
interface

GDL-channel interface

Effect of water filled interface area on

0.5 0. vonigc_-{l. §p_¢7; RH i=1.25A/cm?, Winerface = Lim
. . e &g 8.20%
& Nonlinear decrease in performance -
. . . . 0.4
» Drop in performance is much higher if the water
filled interfaces are under channel comparedto 2, £5.8%
under land £
£02
3
01 +— Under channel
e----e  Under land

0.0
0.00 0.05 0.10 0.15 020 0.25 0.30
E Fraction of cross section area blocked by water filled interface
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AcCcomplisnments:

Interface — Impact of blockage at MPL/CL

Constant Current Constant Potential
® Mimics cell in stack ® Mimics single cell
0.6 ﬂtE §f§o‘;ﬁf 3fklw;lljt§€12rlfl?ai1nnt§1rf ?%?,,fﬁiﬁ“;?ﬂf‘ngc Effect of interface area fll'action on currentI at 80% RH. Interface area under channel
e 1.5F *Winlerface=“"'m‘ Ecel|=0'6v
s ‘W +Winlerface:] HH EceII:U'SV
05l .. Cm ~_ 1.4 inlerfncezo'sﬂ'm’ I:'cell=0'6v
e Cm 45.46% 5 |2165% LW, =0.5um, E_, =0.5V
° -..n. é::«]-:” | interface cell
~0.4} n %, 2
s . 58.6% o
203 . 85.85% £ T
2 S lasw T .
So.2}
—  i=]Alcm? - . . .
O.1p] &=e i=l.15A/cm2 ’ o Interface gt.‘::a fraction e "
=a j=].25A/cm?
OOQOO 0.05 0.10 0.15 020 0.25 0.30 . .
Fraction of cross section area blocked by water filled interface 3 AImOSt ||near Cha nge INn ave rage
current density driven by blocking
® Nonlinear and more severe change off of reaction area
in cell potential driven by need for & Interface width not significant as
higher average current density long as wide enough

% Impacts even at 5-10 %
CPA

FUEL CELL PERFORMANCE]
AND DURABILITY




Accomplisnments:

. . 0.60 Effect of capillary pressure on voltage at 80% RH
® Droplets result in dynamic pressures e
at GDL/Channel boundary 0551
090 | — | s gO.SO- It L SR N . 7.82%
o | s R
é 060 | - Ej :18'().457
:;e 050 | 1 3000 E 8 -
3 0w | °é — i=1A/cm? 13.15%
030 t 1% % 0.40r o----e i=1.25A/Cm2 SR I.J
020 r { 1000 ° =-m j=1.5A/cm?
o0 if T2 0.35. : - : : -
0.00 . . . 0 2000 2500 3000 3500 4000 4500 5000
0 50 100 150 200 Capillary pressure at GDL-channel interface (Pa)
Time [s]
% Simulate to see if have effect on ® Performance is sensitive to the
performance boundary condition at higher

current densities

F’TM/}MPL

& Relatively linear change so can use
time-averaged value

Channel Channel

GDL-channel interface

CPA
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AcCcomplisnments:
GDLs —Imaging and Modeling Water Evaporation

. ® Study with x-ray tomography and
x 10 .
1 _ _ 186 um, 0.57 modelmg
O SGL 24BA 1x

0.8 O SGL24BA 2x & Water roughness factor increases linearly
Open- experiment . .
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e S &, Evaporation rate

0.4 .
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Proposed Future Work

® Membranes

O Investigation of side-chain chemistry and governing structure-property correlations,
especially impact of reinforcement

& Determine the relationship between cerium migration and durability
» Understand the relative influence of each migration mechanism
» Stabilize cerium in the PEM and localize it to areas of highest radical generation

® Dispersions and Casting

& Direct observation of shear-induced transformation of dilute solutions

& Model study to elucidate interactions during solvent evaporation with different solvents
® lonomer thin films

& Explore conditioning protocols for thin films relevant to CL preparation and conditioning
and elucidate the impact of various carbon substrates

% Develop a thin-film structure/property model
® GDLs
& Model interactions and examine scale coupling
® Interfaces
U Explore interfacial effects related to conductivity and rougher membrane interfaces
% Detail model for GDL/Channel interface and droplets

Q FUEL CELL PERFORMANCE]
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Summary

® Relevance/Objective:

& Optimize performance and durability of fuel-cell components including ionomers, interfaces,
diffusion media, and bipolar plates

® Approach:

& Use synergistic combination of crosscutting thrusts to explore component properties, behavior,
and phenomena

® Technical Accomplishments:
& Combined modeling and experiment to understand interfaces
» Examined water-related issues including blockage and droplet conditions
% New key findings on the role of EW/side-chain on ionomer thin-film morphology and swelling
% Investigations on Nafion XL composite membrane ’s transport/stability behavior
» Cerium migration and correlation to durability
» Conditioning-dependent anisotropy
% Impact of solvent and processing on dispersions

® Future Work:
& Understand liquid-water movement and interactions in fuel-cell components and cells
& Explore genesis of membranes and thin films and their associated properties
& Minimize and stabilize cerium migration in membranes under operation

& Leverage cross-cutting thrusts to provide knowledge to optimize component durability and
performance

Q FUELEELL _
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FC-PAD Thrust 3

Technical Back-Up Slides




lonomer Thin Films Crystallinity

lower EW / higher IEC
more ionic groups <&

3M660EW |[25nm  3M825EW|25nm

Nafln 1100 EW | 25 nm ® Crystallinity in Thin Films
il % Impact of thickness

> lonomer thin films possess crystallinity

-0 -5 0 5 10 -10 -5 0 5 10 =10 -5 0 5 10

for bulk-like thicknesses (100 nm or
g, lnm™"] a, [hm ] g, lnm™"] higher)
3M660EW |[50nm  3M825EW |50 nm  Nafion 17100 EW | 50 nm

> Nafion vs 3M thin films

» Lowering EW tend to reduce crystallinity
e in ionomer thin films, similar to that
10 -10-5 0 5 10

g, lam observed in bulk membranes
Nafion 1100 EW [100 nm

-10 -5 0 5 10 -10-5 0 5
-1 -1
qpnm ] q,[nm ]

3M 660 EW [100 nm  3M 825 EW |100 nm

— This in agreement with the higher
swelling observed in lower-crystalline

\ films such as 3M PFSAs (< 825 EW)
05 0 510 105 0 51 105 0 5 10 compared to Nafion 1100 EW
qp[nm’]] qp[nm’wl qp[nm’]]

I(q,) line profiles:
_ 25nm 50 nm 100 nm
= Nafion 1100 EW
E
é 3M 660 EW 3M 660 EW
c

10 12 4 10 12 14 10 12 14

a, [nm ] q, [nm™] q, (nm™"]

cPA
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lonomer Thin Films: Impact of EW/Chemistry

® Grazing-incidence X-ray scattering ® Comparison of Nafion and 3M PFSA
(GISAXS) under humidification thin films (20 to 100 nm)
& Weaker phase-separation with & Most striking difference is phase-
reduced film thickness (< 50 nm) separation and alignment
> RH effect is similar to that for bulk > Full-width half-max (FWHM) is
membrane, increases water d-spacing decreases with EW (also side-chain?)

® Key role of side-chain and EW in
ionomer film morphology

Nafion 1100 EW | 100 nm Thin Film:Impact of Relative Humidity (RH)

& more critical than observed in bulk

0

-2 -1

q, [nm™"] (a) In the plane direction: (qp) {b) Thickness direction: (q,)
‘ Nafion ) Lot
200 Itqp) profiles scattering ring - 2477
. \ \ionomer peak) _ 24 "
2100 higher RH I e 15 E 159
S, \ . £ n
- ionomer 2 14
%‘ 50 peak ‘Sﬁ ! =
2 Whi.L S = 05 < 05
1. ki he ks d -
g L n;u.mw% i = s N
| 0 L4 R
25 R
25 - I 50 .
0.5 1 _11.5 2 (3022) 50 =L 100 (30+2) sov) 100 s 1100
gpnm™1] R, P £2 660 Film 1, (120%2) EW [g/mol]
™ Thicyh ) 20+2) EW [g/mol] ickness |
35 [nm; m;
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Effects of cerium migration on performance

® In-plane gradients in PEM cerium will reduce the ability of cerium to
protect the inlet, while decreasing proton conductivity near the outlet

H HO* (PFSA)

Cerium {,
Protection ,

20 um 1+

Cerium P

OUTLET H* cond. 1
® Through-plane cerium migration into the CLscréduces fbﬁetrmrm@neéf? 2011

% Conductivity loss of CL ionomer

L Losses are amplified as CL degrades
Cheng, et al., J. Electrochem. Soc., 160, 2013

Banham, et al., J. Electrochem. Soc., 161, 2014
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PEM: Correlation between Ce and F in effluent water

20 1.6 — 7 0.3 —
Wet/d ry 6 0.25
15 | 12 _ ~ . 100% RH _
3 cycle 'g c 02 g
3 XJ S 4 S
210 08 E = 0.15 £
£ £ £ 3 £
3 2 g 01 32
5 04 & © 2 -
0 0 0 0
0 200 400 600 800 0 500 1000 1500 2000
Time (h) Time (h)
12 0.5
0 30% RH 04 _ CE.,,, = cumulative cerium emissions
(o] (o]
5§ ° 03 & FE.,,, = cumulative fluoride emissions
§ . 02 E |+« Cerium and fluoride release are correlated
” 5 01~ | * Cerium is released from the MEA as part of a
side chain polymer fragment
0 0
0 100 200 300 400 500
Time (h)
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GDLs: Experiment and Model Description

* Experimental set-up featured * 3D direct meshing of water fronts
controlled water injection on the ¢ Stefan-Maxwell diffusion for vapor
bottom and gas flow on top of the ¢ Isothermal, equilibrium thermodynamics

GDL
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poes cerium migration rrom tne reivi Cause
___greater degradation?

® Performed a cerium migration phase before identical 30% RH AST:

10

1
Cerium is moved from
BE\;& s s EErrEEeTSs:sy the PEM into the CLs
08 8 without inducing
degradation

< 0.6 -0—-AST only 6 fl
; —-0—Ce migration + AST E
S % | Initial OCV drop and
0.4 a = |. :
& increase in FER suggest
Ll
that degradation could
0.2 2 be enhanced by
o—o— cerium migration out
of the PEM
0 0
0 50 100 150 200

Time (h)






