

2016 DOE Hydrogen and Fuel Cells Program Review

Tailored High Performance Low-PGM Alloy Cathode Catalysts

Pls:

Vojislav R. Stamenkovic

Nenad M. Markovic

Materials Science Division

Argonne National Laboratory

Project ID# FC140

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start: 10/2015

Project end: 10/2018

Budget

- Total Project funding \$ 3.6M
- Funding for FY16: \$ 1.2M

Barriers to be addressed

- 1) Durability of fuel cell stack (<40% activity loss)
- 2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)
- 3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

Partners:

- Argonne National Laboratory MERF CSE Greg Krumdick, Debbie Myers
- Lawrence Berkeley National Laboratory Peidong Yang
- Los Alamos National Laboratory Rod Borup, Plamen Atanassov (UNM)
- Oak Ridge National Laboratory Karren More

Project Lead:

Argonne National Laboratory - MSD – V.Stamenkovic / N.Markovic

Relevance

<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable Pt-Alloy *catalysts* for the ORR *with low-Pt content*

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications ^h			
Characteristic	Units	2011 Status	2020 Targets
Platinum group metal total content (both electrodes) ^a	g / kW (rated)	0.19 ^b	0.125
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10
Mass activity ^e	A / mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44
Non-Pt catalyst activity per volume of supported catalyst ^{e, f}	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) ⁹ 165 (extrapolated from >0.85 V) ⁹	300

Source: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan

Relevance

<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable Pt-Alloy *catalysts* for the ORR *with low-Pt content*

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications ^h			
Characteristic	Units	2011 Status	2020 Targets
Platinum group metal total content (both electrodes) ^a	g / kW (rated)	0.19 ^b	0.125
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10
Mass activity ^e	A / mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44
Non-Pt catalyst activity per volume of supported catalyst ^{e, f}	A / cm³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) ⁹ 165 (extrapolated from >0.85 V) ⁹	300

Source: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan

ANL Technical Targets

- Total PGM loading 2020 DOE target 0.125 mg_{PGM}/cm²
- Loss in initial mass activity 2020 DOE target <40%
- Mass activity @ 0.9V_{iR-free}
 2020 DOE target 0.44 A/mg_{Pt}

Approach

Materials-by-design approach - to design, characterize, understand, synthesize/fabricate, test and develop tailored high performance low platinum-alloy nanoscale catalysts

- Rational synthesis based on well-defined systems
 Addition of the elements that hinder Pt dissolution
- Activity boost by lower surface coverage of spectators
- Prevent loss of TM atoms without activity decrease

Approach

Project Management

Table 1	FY16 FY17 FY18			
Active Task	Q1 Jan	Q2 Apr	Q3 July	Q4 Oct
T1 wds	It	It	If	It
T2 SYN				
T3 ECC		11	11	11
T4 SUP	1 1	1 1	1 1	1 1
T5 SCA	1 11	1 11	1 11	1 11

- Task 1 Well-Defined Systems (WDS)
- Task 2 Synthesis of Materials (SYN)
- Task 3 Electrochemical Characterization (ECC)
- Task 4 Novel Support/Catalyst (SUP)
- Task 5 Scaling Up of Materials (SCA)

- From fundamentals to real-world materials
- Simultaneous effort in five Tasks

- Go-No Go evaluation
- Progress measures are quarterly evaluated

1º Accomplishments and Progress: In-Situ EC-ICP-MS Pt(hkl)-Surfaces vs. Pt/C

0.6

E (V vs. RHE)

0.4

0.8

1.0

0.0

0.2

Total Pt loss over one potential cycle up to 1.05 V for distinct Pt surface morphologies, indicating the stability trend follows the coordination number of the surface sites

ACS Catalysis, 6 (4), 2536-2544, 2016

1° Accomplishments and Progress: In-Situ EC-ICP-MS Pt-Surface/Au Subsurface

2º Accomplishments and Progress: Catalysts Structures with Subsurface Au

number of Pt active sites for adsorption of O₂

Addition of element in the core prevents segregation of Au over Pt after annealing

Annealing induces formation of Pt-Skin structure

Au remains in the subsurface

2° Accomplishments and Progress: Catalysts Structures with Subsurface Au

Sample 4 of AuX/NiPt-Skin after 10K cycles to OCP shows the best activity-stability at room temperature Input to nanoscale synthesis about the structure/compostiion of the core-shell catalyst

3° Accomplishments and Progress: Pt₃Co catalysts Structures

in collaboration with M. Chi and K.L. More, ORNL

Annealing sequence of Pt₃Co NP

HAADF at different T and t(min)

HAADF and EDS elemental mapping

M. Chi, C. Wang, Y. Lei, G. Wang, K.L. More, A. Lupini, L.F. Allard, N.M. Markovic, and V.R. Stamenkovic **Nature Communications 6 (2015)** *No.* 8925

Dynamic of structural and chemical evolution at the atomic scale of Pt₃Co NPs during in-situ annealing distinct behavior at critical stages:

{111}, {110}, {100} facets play different roles during the evolution of structure

formation of a Pt-Skin shell with an alloyed disordered core;

the nucleation of ordered domains;

the establishment of an ordered L1₂ phase followed by pre-melting

3° Accomplishments and Progress: PtCo Structures Towards Intermetallics

It is expected that PtCo (L1₀) has even better performance than the intermetallic Pt₃Co (L1₂)* Nat. Mat. 12, 81–87 (2013)

3° Accomplishments and Progress: PtCo Structures Towards Intermetallics

It is expected that PtCo (L1₀) has even better performance than the intermetallic Pt₃Co (L1₂)* Nat. Mat. 12, 81–87 (2013)

3° Accomplishments and Progress: PtCo Towards Novel Structures

in collaboration with Peidong Yang, LBNL

3-D Intermetallic Nanostructures for Enhanced ORR Stability

Two theta (degree)

XRD: Converted to intermetallic Pt₃Co after annealing treatment

SiO₂ coating allows high T annealing w/o agglomeration High surface to volume ratio

1-D branches protruding from the core

Elongated highly crystalline surfaces with Pt-Skin topmost layer

Tunable composition and structure, including intermetallics

4° Accomplishments and Progress:

PtNi Nanoframe Surface Structure

PtyNi(1.5) PtyNi(1.5) Photon Energy (eV) Discrete PtyNi(1.5) Post 840 8360 8360 8400 8420 Photon Energy (eV) Discrete PtyNi(1.5) Photon Energy (eV) Discrete PtyNi(1.5) Photon Energy (eV)

Pt₃Ni(1.0)

PtaNi(1.0)

8300 8320 8340 8360 8380 8400 8420

Photon Energy (eV)

40 -20 0 20 40 60 8 Energy Relative to Ni K-edge (eV)

0.6

Pt₃Ni(1.5)

In situ EXAFS:

Pt₃Ni(1.0) has a larger extent of alloying vs. Pt3Ni(1.5), including surface Ni that becomes NiO

Pt₃Ni(1.5) has significant segregation of Pt with smoother morphology and the thickness of at least two atomic layers

Pt₃Ni(1.0) has a thinner, rougher Pt surface caused by insufficient segregation of Pt to the surface

Pt₃Ni(1.5) exhibits extremely high ORR activity due to its significant segregation of Pt, forming of a Pt-skin

The activity of a given nanoframe sample is primarily pre-determined by the level of platinum surface enrichment

--- Pt₃Ni(1.0)

 $Pt_3Ni(1.5) = Q_{CO}/Q_{Hupd} = 1.5$

 $Pt_3Ni(1.0) = Q_{CO}/Q_{Hupd} = 1.0$

ORR rate: $Pt_3Ni(1.0) < Pt_3Ni(1.5)$

N. Becknell, Y. Kang, Chen Chen, J. Resasco, N. Kornienko, J. Guo, N.M. Markovic, G.A. Somorjai, V.R. Stamenkovic, P. Yang **JACS 137 (2015) 15817**

in collaboration with Peidong Yang, LBNL

Ternary Metal Nanoframes

in collaboration with Greg Krumdick, ANL -MERF

- Argonne's Material Engineering Research Facility (MERF) was tasked with scaling up the new materials.
- The current process used in the discovery laboratory will be reviewed and scrutinized for scale up utility.
- MERF will conduct process R&D and develop scalable process for producing the material.
- The materials will be validated on each stage of scale up process and performance compared with the original sample.
- Detailed procedures for synthetizing, characterizing, and evaluating will be compiled into Technology Transfer Package.
- The materials will be available for both basic researches and industrial evaluators.

in collaboration with Greg Krumdick, ANL -MERF

- Initial process R&D will focus on batch NP synthesis.
 - Investigate temperature and rate of addition on NP characteristic.
 - Nucleation rate vs. addition rate.
 - Improve safety of the process.
- Material selected for scale up is multilayered Pt-skin NP (Lab scale—0.1 g catalyst).
- 1st stage of scale up—1 g catalyst.
- 2nd stage of scale up—5 g catalyst.

Future target is to develop continuous process (flow reactor).

- Fast mass and heat transfer.
- Accurate control of reaction temperature and duration.
- Allow rapid optimization of reaction parameters.
- Low usage of reagents in the optimization process.
- Easy scalability by duplicating.
- Capability for online quality monitoring.

Pt₃Ni Nanoframes/C with Pt-skin surfaces

Performance	PtNi	TKK Pt
Specific Activity 0.9V/0.95V (mA/cm ²)	5.30/0.68	0.78/0.11
Mass Activity 0.9V/0.95V (A/mg)	3.5/0.49	0.56/0.11

6° Accomplishments and Progress:

PtNi MEA Characterization

in collaboration with Debbie Myers, ANL - CSE

Cathode Loading: 0.046 mg-Pt/cm² I/C = 1, H_2/O_2 (or Air), 80°C, 150 kPa(abs), 100%RH

TKK 20 wt%Pt/C

PtNi 16.7 wt%Pt/C

	Units	PtNi		TKK Pt
Pt loading	mg _{PGM} /cm² _{geo}		0.045	0.045
Mass Activity (H ₂ -O ₂)	A/mg _{PGM} @ 0.9 V _{iR-free}		0.60	0.27
Specific Activity (H ₂ -O ₂)	mA/cm ² _{PGM} @ 0.9 V _{iR-free}		1.85	0.39
MEA performance (H ₂ -Air)	mA/cm ² @ 0.8 V	101		47
ECSA	m²/g _{PGM}		35.10	52.5

Collaborations

OEMs
T2M

Remaining Challenges and Barriers

- 1) Durability of fuel cell stack (<40% activity loss)
- 2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)
- 3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

- Differences between RDE and MEA, surface chemistry, ionomer catalyst interactions
- Temperature effect on performance activity/durability
- High current density region needs improvements for MEA
- Support catalyst interactions
- Scale-up process for the most advanced structures

Proposed Future Work

- Evaluation of activity/durability and optimization of MEA protocols at ANL and LANL
- Alternative approaches towards highly active and stable catalysts with low PGM content
- Tailoring of the structure/composition that can optimize durability/performance in Pt-alloys
- Synthesis of tailored low-PGM practical catalysts with alternative supports
- Structural characterization (in-situ XAS, HRTEM, XRD)
- Resolving the surface chemistry in MEA
- Electrochemical evaluation of performance (RDE, MEA)
- In-situ durability studies for novel catalyst-support structures (RDE-ICP/MS)
- Scale-up of chemical processes to produce gram quantities of the most promising catalysts

Technology Transfer Activities

Constant build up of IP portfolio
 5 issued patents, 4 pending

Auto OEMs

Auto OEMs in FY16

Four OEM visits 3 NDA signed

SUMMARY

Approach

- From fundamentals to real-world materials
- Focus on addressing DOE Technical Targets
- Link between electrocatalysis in the RDE vs. MEA
- Rational design and synthesis of advanced materials with low content of precious metals

Accomplishments

- Established three new labs since 10/2015: EC-ICP/MS, MEA and Scale-Up process Lab
- Quantified durability, atom-by atom on different Pt surfaces
- Surfaces with highly corrugated morphology are less stable (Pt-Skeleton)
- Addition of subsurface Au diminishes Pt dissolution
- Novel Au core structures allow annealing of Pt-alloy shell w/o segregation Au while Pt-skin is formed
- In-situ annealing of Pt-alloy NP reveal transition from disordered alloy, Pt overlayer (Pt-Skin) to intermetallics
- Novel intermetallic structures with promising electrochemical properties have been synthesized
- In-situ EXAFS revealed the real surface structure of highly active PtNi nanoframe catalysts
- PtNi with multilayered Pt-Skin exceeded DOE 2020 Technical Target for mass activity and durability in MEA
- One patent issued in 2016, 5 articles published and 4 presentations at conferences

Collaborations

- Collaborative effort among the teams from four national laboratories is executed simultaneously in five tasks
- Ongoing exchange with Auto-OEMs
- Numerous contacts and collaborative exchanges with academia

Dr. Dongguo Li (RDE, synthesis, thin films)

Full time postdocs: Dr. Haifeng Lv (RDE, synthesis, MEA)

Dr. Rongyue Wang (scale up syntehsis, RDE, MEA)

Partial time postdocs: Dr. Pietro Papa Lopes (RDE-ICP-MS)

Partial time Staff: Paul Paulikas (UHV, thin films)

Grad student: Nigel Becknell (synthesis, RDE, EXAFS)

Publications and Presentations FY16

5 Publications
4 Presentations
1 issued US patent
3 patent applications