

2016 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting

Cryogenically Flexible, Low Permeability H₂ Delivery Hose

P. I.: Dr. Jennifer Lalli, President NanoSonic, Inc. 6/9/2016

Project ID # PD101

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 7/28/2014
- Project End Date: 7/27/2016

Barriers

- Lack of H₂ / Carrier and Infrastructure Options
- Reliability and Cost of Gaseous H₂ Compression
- Reliability and Cost of Liquid H₂ Pumping
- Eliminate H₂ Embrittlement, Increase Durability

Budget

- FY13 DOE Funding: \$150,000
- FY14 DOE Funding: \$1,000,000
- Total DOE Project Value: \$1,150,000

Partners

- CSA Group
- NREL
- Swagelok and Lillbacka
- New England Wire Technologies
- Shell and WEH USA
- Giles County Government

Relevance:

Develop a H₂ Hose Dispenser for Fuel Cell Vehicles

Objectives:

- <u>Develop</u>: Flexible dispensing hose to enable H₂ delivery < \$2/gge
- <u>Demonstrate</u>: Reliability at -50 °C and 875 bar for H70 service
- <u>Optimize</u>: Ruggedness, cost, and safety, 70 fills/day, > 2 years

NanoSonic

Impact in April 2015 – April 2016:

- <u>Produced</u>: Low T_g, Low H₂ Permeability, Fiber Reinforced Hose with High Pressure Fittings
- <u>Verified</u>: Mechanical and Solvent Durability for H₂ Dispensing Stations
- 3

Approach:

Develop Advanced Metal-free H₂ Hose Dispenser for Fuel Cell Vehicles

- <u>**Technical</u>**: Low T_g Hose Matrix Resin for Cryogenic, High Pressure Flexhose Service</u>
- **<u>Safety</u>**: Low H₂ Permeability, Zero VOCs, and No Residual Monomer for EGA
- **Durability**: Fiber Reinforced to Eliminate H₂ Embrittlement and Optimize Burst Strength
- Manufacturing: Ceramer Crimping Agent to Match CTE/Modulus of Hose and Fitting
- **<u>Cost</u>**: lifetime against: Spir Star, Yokohama, ContiTech, Togawa, Aeroflex

-60 °C to 100 °C All polymer H70/H35 hoses	Spir Star	Yokohama Rubber / Iwanti IG	Togawa Rubber	ContiTech	AeroFlex Hose & Engineering
noses	6mmHydrogen -40 °C to 65 °C Steel H70	ibar HG ₇₀ H70	H35	Metal Corrugated core	750 bar H ₂

NanoSonic Metal-free H₂ hoses

- June

Approach: Project Phases and Selected Milestones

Define and Evaluate FY14 – FY15 Q2 critical performance metrics, components, partners, materials, and deployable design Test PrototypeFY15 Q2-Q3hose/fittings with H2 under servicePressure, temperature, and mechanical

Deploy

QualifyFY15 Q4 - FY16 Q3H70/H35 hose with OEM dispenser/nozzlefor safety and environmental durability

FY16 Q4

H70/H35 hose at H₂ stations

Critical Criteria

- Low T_g for expected -50 °C dispensing
- Surpass 875 Bar hydrostatic strength and pressure cycle testing
- No contaminant leaching
- Competitive cost, mechanical durability, and environmental lifetime

Accomplishments in Cryogenic Service

- 1. siloxane backbone low T_g for cryogenic flexibility
- 2. urethane component amine bonding to reinforments
- 3. fluorinated siloxane UV, ozone, and atomic oxygen
- 4. tailored molecular weight (M_n) extrusion manufacturing
- 5. Low T_g ceramer durable polymer / fitting connection

Low T_g polymer matrix resin and ceramer with verified low off-gassing has been engineered, and tested for long-term use as the flexible hose material and coupling agent

Accomplishments in Low H₂ Permeance

Triple Cold Flex Test for H₂ Permeance Specimens at -50 °C : Flat, Mid-Way, and 180 ° Fold

The hose material exhibits ultra low H₂ permeance before and after being subjected to the harsh 180 ° triple fold, cold flex test, conducted at -50 °C

Accomplishments in Mechanical Durability: Fiber Reinforcement : $P = 2 s t / (d_o SF) = 1705 bar or 24,725 psi$

A study by Savannah River National Laboratory concluded there was no mechanism for degradation and/or embrittlement of several polymers by hydrogen gas alone

NanoSonic's all-polymer, fiber reinforced hose survives the triple cold flex test and has a predicted burst strength of 1705 bar. The design will be selected per pressure testing.

Challenges in Manufacturing

ANSI/CSA HGV 4.2-2013: Clause 2.4 Hydrostatic Strength

- NanoSonic hose Swagelok ¼-inch compression tube fitting
- Fixtured in the Hydraulic Burst Chamber
- Pressurization rate was set for 14500 psi/min
- Pressure Transducer (CSA asset Z00001141 Viatran transmitter)
- Pressure Gauge (CSA asset PG-74 Astragauge analog)

Sample:	Failure Pressure (PSIG):	Comments:
LB199-157-2	2,073	hose assembly pulled out of end connections
LB199-157-3	1,082	hose assembly pulled out of end connections
LB199-159-1	985	hose assembly leakage past end connections
LB199-164-2B	223	hose assembly pulled out of end connections

The tough low T_g, low modulus hose posed a crimping challenge that is being addressed though chemistry, hose/fiber design, and crimping techniques

Accomplishments in Manufacturing: Reinforced with Ceramer Coupling Agent

Sic Ce

SiC Ceramer adhesion promoter

for crimped fitting

Test ID	Hose	Length (inch)	Fitting Manufacturer	Fitting OD	Ceramer in Hose	Ceramer at Fitting	Burst Pressure (psi)
WH208-8C	А	17	1	proprietary	X		6446
WH208-8D	А	17	1	proprietary	x	x	8334
WH208-8E	А	17	2	proprietary	x		4304
WH208-8F	А	17	2	proprietary	x	x	7016
WH208-9A	В	17	1	proprietary			52959
WH208-9B	В	17	1	proprietary		x	58440
WH208-9C	В	17	2	proprietary			9635
WH208-9D	В	17	2	proprietary		x	26136

Ceramer significantly increases burst strength as a coupling agent with the fitting

NIC/

New Challenges in Manufacturing

Bonding /crimping in-house yields a complete product, but challenges in procuring optimal fitting.

Accomplishments in Fiber Reinforcements

Sample: Fai	ilure Pressure (PSIG)	Comments: .
POMKWrap-1	10300	Hose assembly pulled out of end connections
POMKWrap-3	7200	Hose assembly pulled out of end connections
POMKWrap-7	8100	Hose Rupture
POMKWrap+Sp	pectra 16700	Hose Rupture
POMWeave	15100	Hose assembly pulled out of end connections
SpirStar	21200	Hose assembly pulled out of end connections

Kevlar fiber weave doubles burst strength relative to wrap Kevlar wrap (4 layers) yields 80% burst strength of metal wrap (8 layers)

Accomplishments in Carbon Fiber Reinforcements

Bob Norris in Carbon and Composites Group, ORNL and Craig A. Blue, CEO, IACMI-The Composites Institute, Knoxville, TN

Sample:	Failure Pressure (PSIG)	Comments: .
POMCFWrap-32A	8300	Hose Burst
POMCFWrap-39A	9100	Hose assembly pulled out of end connections
POMCFWeave	9400	Hose Burst
POMCFWeave	11030	Hose Burst
SpirStar	21200	Hose assembly pulled out of end connections

Carbon fiber weave exhibits 20% greater burst strength relative to wrap Carbon fiber weave (0.5 mm thick) yields ~ 50% strength of metal wrap (1.25 mm thick)

Technical Accomplishments: Cost

Innovative Approach and In-house Manufacturing Enables Competitive and Cost Advantage at Any Scale

- Current projected cost at 300 meter with fittings is 2x less than qualified German competitor
- Cost normalized for lifetime predicts a 4x savings
- Proprietary scale-up method for hose production length may lead to an 8x savings for 600 meter

Collaborations and Cost Sharing

New England Wire Technologies 6. Prototype manufacturing – subcontract executed on 10/29/14 7. **Giles County Government** Local large scale manufacturing support and architecture for 100ksf building ٠ Funding Type Years Amount Source Туре Covers R & D, Prototype Design & Production Phase I SBIR DOE \$100,000 2013 Cash Phase II SBIR DOE Cash \$1,000,000 2014-2016 Product Engineering, Qualification DOE & H2 Fueling Stations \$1,500,000 2017-2020 Purchase Order and Installation Phase III IDIQ Cash Company Contribution Commercialization and Marketing NanoSonic Cash \$600,000 \$200k annual Alliance Agreement Lockheed Martin Product Validation Partner Contribution Hose Parts Partners Porduct Integration **County Contribution** Giles County \$1,100,000 2010-2016 Manufacturing and Shipping In-kind 19 County Infrastructure Giles County \$7,500,000 2010 Infrastructure In-kind

Integration – breakaway connector and H₂ fueling nozzle

Fittings - ongoing consulting on fittings and high pressure hoses

1.

2.

3.

4.

5.

•

CSA Group

Swagelok

Lillbacka

WEH USA

Testing – briefing at CSA on 11/6/14

National Renewable Energy Laboratories (NREL)

Hose crimping – purchased crimper on 1/03/15

Prototype evaluation – subcontract executed on 11/4/14

Swagelok

CSA Group

Lillbacka USA

Future Work: Durability and Quality

ANSI/CSA HGV 4.2-2013: Hoses for Compressed H₂ Fuel Stations, Dispensers and Vehicle Fuel Systems SAE J2719: H₂ Fuel Quality for Fuel Cell Vehicles

- <u>Mechanical</u>: Pull-Out Strength of Crimp/Hose and and pre- post- stress strain morphology at NREL
- <u>Hydrostatic Strength 2.4</u>: 1 min hold without burst at hydrostatic pressure of 4 times the maximum allowable working pressure (MAWP), up to 10,000 PSI MAWP
- <u>Pressure Cycle 2.17</u>: 50,000 cycles at MAWP at -40 °C and 50,000 cycles at 85 °C followed by compliance testing to Leakage and Electrical Conductivity
- <u>Hydraulic Pulse</u>: testing conducted up to 14,500 psig at 1Hz with a fluid temperature up to 150 °C
- Evolved Gas Analysis: and leak monitoring to ensure that the hose will not compromise H₂ quality per the SAE J-2719 and ISO/PDTS 14687-2 specs, where Minimum Fuel Cell Grade H₂ = 99.99%, total impurities < 100 ppmv, and total impurities < 100,000 ppb

Future Work: Scale-up Resins in-House

NanoSonic has 50 and 200 gallon batch reactors to scale-up hose and ceramers for cost savings

Remaining Challenges and Barriers: Hose Qualification & Deployment

- Challenge: Deployment date of FY16 Q4 because of delayed pressure testing due to fittings
- Resolution: Obtained fitting crimper and developed innovative ceramer technology
- Benefit: Ceramer inclusion may surpass durability of all current or future competitors
- Benefit: Investigating new non-metal reinforcing materials and designs

Filament Winder System

Improve Understanding Of Crimping Techniques

Hydraulic Test Chamber

Pneumatic Test Chamber

Project Summary

- <u>Relevance</u>: Durable and cost effective H₂ delivery hose that resists H₂ embrittlement, survives 25,550 fills/year for H70 service, cycled at pressures > than 875 bar over a range of 50 °C to 90 °C. A single qualified hose exists.
- <u>Approach</u>: NanoSonic's all polymer new class D hydrogen dispensing hose, for use on H70 station side applications, is chemically engineered to survive 51,240 fills, resist H₂ embrittlement, survive Joule-Thompson effect, and endure mechanical fatigue at the pump. Innovative SiC ceramer adhesive is under development to enhance fitting durability

• <u>Technical Accomplishments</u>:

- Developed low T_g hose that demonstrates ultra-low hydrogen permeance after 180° bending, three times in a -50°C chamber
- Kevlar and carbon fiber reinforced hose approached burst pressure of metal wrap
- Innovative ceramer coupling agent enhances crimp survivability
- Reduced cost via scale-up
- Proposed Future Research: Evaluate new fiber wraps with multiple fittings. Present H₂ hose partners (dispensing stations and fittings/breakaway/fueling nozzle OEMs) with integration and cost. H70 hose compliant with SAE TIR J2601 and NIST Handbook 44, as a durable cost effective alternative to gasoline

Questions and Acknowledgements

This material is based upon work supported by the Department of Energy under Award No. DE-SC0010162

Contact: Jennifer Lalli (540) 626-6266 jhlalli@nanosonic.com

DOE-EERE DOE Fuel Cell Technologies Office: Grace Ordaz, Sunita Satyapal, Charles James, Laura Hill, Neha Rustagi, and Erika Gupta

Phase II Integrators and Testing Facilities

