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Overview

Timeline Barriers

* Project Start Date: 02/01/16
* Project End Date: 01/31/19*

Low hydrogen molar yield (AX)

High electrode (cathode) cost (AAA)
* Project continuation and direction

Low hydrogen production rate (AAB)
determined annually by DOE

Budget Partners

_ « Oregon State University: project lead; cost-
« Total Project Budget: $1,670K

« Total Recipient Share: $167K
« Total Federal Share: $1,500K

share funding
« PNNL: co-project lead

« Oregon Nanoscience & Microtechnologies

Institute: cost-share funding



Relevance

Project Objective:

Develop a microbial electrochemical system for H, production from low-
cost feedstock (lignocellulosic biomass and wastewater) at a cost less

than $2/kg H,

Approach/Strategy to Achieving DOE’s target:

Characteristics Units | Current Status Project Target Commercial Target
Feedstock glucose hydrolysate/wastewater | hydrolysate/wastewater
Feedstock cost contribution | $/kg H, 8.2 2.0/0 1.2/0
Capital cost contribution $/kg H, 3.0 0.4/0.7 0.3/0.6
Electricity cost contribution | $/kg H, 0.4 0.2 0.2
Other operational cost $/kg H, 0.3 0.3/0.6 0.3/0.6
Total cost $/kg H, 11.9 2.9/1.6 2.0/1.5
Credits $/kg H, 0 0/-10 0/-10
Final cost $/kg H, 11.9 2.9/-8.4 2.0/-8.5

* Using wastewater as feedstock can generate a credit as much as -$1/kg glucose equivalent, or -$10/kg H,.




Approach

Dark fermentative H, production

* Advantages Influent (sugars li
— High hydrogen rate -
— Low energy input - -1

¢ Cha”enge Effluent (fatty acids)
— low hydrogen yield *

(Fermentation Barrier):
* Maximum 4 mol H,/mol
glucose
* Most H, stored in liquid C¢H,,0¢ + 2H,0 2 4 H, + 2 CO, + 2 C,H,0,
fermentation end products



Approach

Microbial electrolytic H, production

- Advantages: Ie- PS e-l

» Overcoming the
“Fermentation Barrier”

« High H, yield

H2
P

 Cathode

Anode<

« Challenges

* Incapable/inefficient in
directly utilizing biomass or
biomass components

H+

« Low H, production rate/high A
energy input Separator
Anode: C,H,O,+2H,0—
« High costs for electrode 2C0O, +8e +8H"
and separator materials Cathode: 8H* +8e- 4 H,

Overall: C,H,0, + 2 H,O0 — 2 CO, + 4 H,



Approach

Overall approach of this project:

Develop a hybrid fermentation and microbial electrolysis
cell (F-MEC) system that can be integrated with
lignocellulose pretreatment/hydrolysis or wastewater

treatment processes for H, production.

Pretreatment/hydrolysis ﬁ H, Separation

adi
> Hybrid Treated water
Fermentation-

MEC
Wastewater :-/

| %

Lignocellulose Hydrolysates

Liquid/solid recycle




Approach

Uniqueness of the approach:

» Use low-cost feedstock

Cathode

« Combine strengths of dark
fermentation and MEC processes é@
: . o
» Reduce capital/operational costs =
W|th |OW'COSt and |OW-OV6rpOtentla| o 4 o Cloth as separator
CathOde o Hydrogen
Exoelectrogen
hd RedUCe Operatlonal COSt Wlth nOVG| = 1 ‘ i Fermentative bacteria
reactor design and operational - &3 Fermentative granule
conditions o e s 5 Power supply
influent g
« Apply cost performance model t - a::y
throughout the project to prioritize -
development Fermentation: C;H,,0, + 2H,0 = 4 H, + 2 CO, + 2 C,H,0,
MEC Anode: 2C,H,0, +4H,0 = 4CO, + 16e + 16H*
MEC Cathode: 16H* + 16e” - 8H,



Approach

Budget period 1 (FY 2016-2017)

*Fermentation optimization
*MEC cathode development

Budget period 2 (FY 2017-2018)

*MEC process optimization
*Hybrid system design/fabrication

Budget period 3. (FY 2018-2019)

*Hybrid system evaluation
*Cost performance model




Approach

This reporting period (Feb 2016 — April 2016)

- Identify a fermentative bacterial culture capable of producing H, from
all major sugars in lignocellulose hydrolysates and wastewater

— Mixed culture
» Higher robustness and adaptability
» Easier to grow at large scales
* More economical to build and operate
« Relatively simple to manage
« Suited for using wastewater and complex biomass hydrolysates

— Batch reactors
» Types of bacterial culture
» Types of sugars
* Biogas
* Liquid products
* Developing MEC cathode catalysts

» Cost performance modeling




Accomplishments and Progress

Identification of a bacterial culture capable of producing
hydrogen from all major sugars

45%

B Glucose ®Xylose HGalactose EMannose B Mixture
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H, Yield (% of theoretical yield)

5% 1

0% -

Digester sludge Activated sludge Lab culture

*n= 3, error bars represent standard deviation
Theoretical yield: maximum for known metabolic pathways

Summary: All three tested cultures are capable of producing hydrogen from all tested
sugars. The lab culture enriched with glucose demonstrated the highest hydrogen yield.
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Accomplishments and Progress

Liquid fermentation products

M Butyric acid m Acetic acid m Citric acid = Formic acid ® Propionic acid

*  Provide information for

MEC process design 100
» Types of carbon source
for exoelectrogens 8
* Relative production rate
6
4
Summary:
Butyrate and acetate are ?
the dominant

fermentation liquid 0

o o o

Fatty acids (%)

o

products for all sugars ¥ 288 : tgig: pEogyos
and all three cultures. s % % § E 2%k 5 g 3 % B 5 £
O O (L)

Digester sludge Activated sludge Lab Culture



Accomplishments and Progress

Immobilization of hydrogen-producing culture

» To increase bacterial cell density in continuous-flow reactors
« To increase volumetric hydrogen production rate

45%

H, Yield (% theoretical)

0%

40% -
35% -
30% -
25% -
20% -
15% -
10% -
5% -

20.75%

3.36%

39.00%

100% silicone

*n= 3, error bars represent
standard deviation;
Theoretical yield: maximum
for known metabolic pathways

Summary: Immobilization of the lab culture using silicone demonstrates

the highest hydrogen yield.
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Accomplishments and Progress

Cathode catalysts

» Synthesized nitrogen
doped porous carbon (N-
C), surface area tunable
between 1000-2500 m?/g.
Metal catalysts will be
applied onto N-C.

> ldentified metal catalyst
candidates (NiMo, NiCo,
NiCoMo) from literature
research.

Intensity / a.u.

N1: pyridinic-N; N2: pyrrolic-N
N3: quaternary-N;
N4: N-oxides of pyridinic-N

405 402 399 396
Binding energy / eV

*Black line: original data; Red line: fitted data
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Accomplishments and Progress

Cost performance modeling

. Test driving DOE H2A model for hydrogen production
. Successfully ran the model with mock input values
. Received suggestions from NREL experts
. Conducted preliminary cost estimation of
feedstock, yield and required reactor size

. Working on implementing the model for this work
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Responses to Previous Year Reviewers’ Comments

* This project just started this year.

15



Collaborations

* Oregon State University (OSU)
— Liu group (Lead): biohydrogen production
— Murthy group: feedstock treatment

— Center for Genome Research and Biocomputing (CGRB):
microbial community characterization

« Pacific Northwest National Lab (PNNL)

— Shao group: cathode development
— Viswanathan group: cost performance modeling

 Oregon Nanoscience and Microtechnologies
Institute (ONAMI)

— Supplemental funding to support a graduate student to work on
this project
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Remaining Challenges and Barriers

Butyrate utilization rate by exoelectrogens may be
slower than that of acetate in MEC

— Enrich butyrate-utilizing exoelectrogens

— Addition of butyrate-utilizing pure cultures

Methane production may occur during long term
operation

— Apply low-cost methane inhibitors to inhibit methanogens

Cathode performance may deteriorate over time

— Evaluate/modify the cathode catalyst to enhance stability

17



Proposed Future Work

Remainder of the year:

*Characterize the microbial community

*Optimization of fermentative H, production in continuous-flow reactors
*Develop hybrid nonprecious metal electrocatalysts for MEC cathode
Evaluate MEC H, production rate from fermentation liquid products
*Cost performance modeling

FY 2017-2018:

*MEC development
— Integrate the cathode materials developed

*Hybrid system design/fabrication
Evaluation of the hybrid system with glucose
*Cost performance modeling
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Technology Transfer Activities

Technology-to-market or technology transfer plans or strategies
— |P related to reactor design and operation
— |IP related to cathode catalyst/material
— Scale up the system
— ldentify industry partners for commercialization

Plans for future funding

— Responding to NSF PFI opportunities
— Seeking support from industry partners
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Summary

Objective: Demonstrate a novel microbial system for efficient H,
production from low-cost biomass

Relevance: Provide a green and renewable approach for H, production
at a cost less than $2/kg

Approach: Develop a hybrid fermentation and microbial electrolysis cell
(F-MEC) system that can be integrated with lignocellulose
pretreatment/hydrolysis or wastewater treatment processes
for H2 production.

Accomplishment: Identified a microbial community that is capable of
producing hydrogen from all major sugars in lignocellulosic
biomass hydrolysates; Synthesized nitrogen doped porous
carbon for loading the non-precious metal catalyst

Collaborations: A team comprised of a university (OSU), a national lab
(PNNL), and a state signature center (ONAMI).
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