Reversible Formation of Alane

A High Hydrogen Density Material for Energy Storage

Ragaiy Zidan
Energy Security Directorate
Savannah River National Laboratory
June 2016

2016 U.S. DOE HYDROGEN and FUEL CELLS PROGRAM and VEHICLE TECHNOLOGIES OFFICE ANNUAL MERIT REVIEW and PEER EVALUATION MEETING

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start: 10/1/06
- End: Continuing
- Percent complete of activities proposed for FY16: 50%

Budget
- FY14 - $400K
- FY15 - $400K
- FY16 - $400K

Barriers
- Low-cost, energy-efficient regeneration
- Dendrite Formation
- Reduced cost for alane synthesis
- Increase conductivity
- Perfect crystallization methods

Collaborators
- Ardica (CRADA Partners)
- SRI
Relevance: Alane as a Hydrogen Storage Material

Overall Objectives

• Develop a low-cost rechargeable hydrogen storage material with cyclic stability, favorable thermodynamics and kinetics with high volumetric gravimetric hydrogen density

Aluminum hydride (Alane - AlH₃), having a gravimetric capacity of 10 wt.% and volumetric capacity of 149 g/L H₂ and a desorption temperature of ~60°C to 175°C (depending on particle size and the addition of catalysts) has excellent potential for application in high energy density devices

Specific Objectives

• Develop cheaper techniques to synthesize alane which avoids the chemical reaction route of AlH₃ that leads to the formation of alkali halide salts such as LiCl or NaCl.
• Utilize efficient electrolytic methods to form AlH₃.
• Develop crystallization methods to produce alane of the appropriate phase, crystal size and stability.
Relevance: Traditional Methods to Form Alane

• Current alane production techniques use AlCl$_3$ and LiAlH$_4$ in a solution based chemical reaction which is costly due LiCl formation which is not easily reversible.

\[
3\text{LiAlH}_4 + \text{AlCl}_3 \Leftrightarrow 4\text{AlH}_3 + 3\text{LiCl}
\]

• AlH$_3$ Adduct consists of AlH$_3$ and etherates (e.g. THF, or Et$_2$O)

• AlH$_3$ Adduct can also consists of AlH$_3$ and amines (e.g. TEA, TMA)

• Depending on conditions different phases can form (e.g. α, α', and γ)

• Only the alpha phase is the most stable

• LiCl is unrecoverable making the chemical rout a costly process

Current price $3,500/kg small scale
Relevance: Advantages of Electrochemical Alane Generation

Generating alane electrochemically allows for the exclusion of halide salts and simple aluminum recycling methods.

\[\text{LiAlH}_4 \rightleftharpoons \text{AlH}_3 + \frac{1}{2} \text{H}_2 + \text{Li}^+ + e^- \quad E^0 = -2.05 \text{ V vs. SHE} \]

\[\text{Li}^+ + \frac{1}{2} \text{H}_2 \rightleftharpoons \text{LiH} + e^- \quad E^0 = -2.33 \text{ V vs. SHE} \]

\[\text{LiH} + \text{Al}^{+\frac{3}{2}} \text{H}_2 \rightleftharpoons \text{LiAlH}_4 \]

Cost Analysis Including Inefficiencies

Aluminum not recycled

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Cost in AlH(_3)</td>
<td>$0.428</td>
</tr>
<tr>
<td>Aluminum Cost in AlH(_3)</td>
<td>$1.982</td>
</tr>
<tr>
<td>E-Chem Thermo Cost</td>
<td>$0.103</td>
</tr>
<tr>
<td>E-Chem Kinetics Cost</td>
<td>$0.096</td>
</tr>
<tr>
<td>E-Chem Ohmic Cost</td>
<td>$0.114</td>
</tr>
<tr>
<td>Total E-Chem Cost from NAH</td>
<td>$2.724</td>
</tr>
</tbody>
</table>

Aluminum recycled

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Cost in AlH(_3)</td>
<td>$0.428</td>
</tr>
<tr>
<td>E-Chem Thermo Cost</td>
<td>$0.103</td>
</tr>
<tr>
<td>E-Chem Kinetics Cost</td>
<td>$0.096</td>
</tr>
<tr>
<td>E-Chem Ohmic Cost</td>
<td>$0.114</td>
</tr>
<tr>
<td>Total E-Chem Cost from NAH</td>
<td>$0.742</td>
</tr>
</tbody>
</table>

Large scale production using electrochemical method expected to reduce cost below $100/kg
Approach: Resolving Issues to Further Lower Cost of Alane

Increasing efficiency and yield by:

A) Recycling materials and additives used in making alane during:
 - Electrochemical process
 - And crystallizations

B) Improve conductivity and explore different adducts:
 - Use THF in the electrochemical cell
 - Use transmutation process to crystal from different adduct

C) Producing alane of high value by producing:
 - Stable alpha alane with Crystal size larger than 5 microns
 - High capacity product that is safe to handled in air and the presence of moisture
Approach: Crystallization and Reagent Recycling for Alane

- Focusing on methods to reduce materials and processing costs of front end synthesis and back end crystallization
- Efforts address both the recycling of solvent and crystallization aids as well as the use of alternative adducts to ether to use feedstock alternatives to LiAlH$_4$
- Improvements to the electrochemical generation of alane are underway to generate LiH at the cathode for electrolyte regeneration

Dow Method Material Costs

- LiAlH$_4$ (53%)
- Crystallization Aids [LiAlH$_4$ + LiBH$_4$] (22%)
- AlCl$_3$ (3%)
- Solvent (22%)
Approach: Resolving Issues to Further Lower Cost of Alane

Increasing efficiency and yield by:

A) Recycling materials and additives used in making alane during:
 • Electrochemical process
 • And crystallizations

B) Improve conductivity and explore different adducts:
 • Use THF in the electrochemical cell
 • Use transmutation process to crystal from different adduct

C) Producing alane of high value by producing:
 • Stable alpha alane with Crystal size larger than 5 microns
 • High capacity product that is safe to handled in air and the presence of moisture
Current Progress: Cathode Optimization/Electrolyte Regeneration

2015 Results: Dendrites were significantly reduced by utilizing a reverse pulse technique during the electrochemical reaction.

2016 Results: MgNiHx-based cathode reduces/eliminates dendrite formation while capturing Li⁺ for regeneration of LiH.

Reverse Pulse Electrochemical Cell

Dendrites from typical 18 hour reaction (a) and (b) reduction after reverse pulsing.

XRD of cycled MgNi electrode in the presence of H₂ reveals the formation of LiH.
Current Progress: Recovery of LiBH$_4$ and LiAlH$_4$

- LiBH$_4$ and LiAlH$_4$ are costly additives needed to assist the crystallization process
- Alane was washed with ether to dissolve and recover LiBH$_4$ and LiAlH$_4$

99.9 % Recovery

XRD- depicts the recovery of LiAH4 and LiBH4 used in crystalizing alane

TGA shows the dehydrogenation of recovered of LiAH4 and LiBH4 sample used in crystalizing alane
Approach: Resolving Issues to Further Lower Cost of Alane

Increasing efficiency and yield by:

A) Recycling materials and additives used in making alane during:
 • Electrochemical process
 • And crystallizations

B) Improve conductivity and explore different adducts:
 • Use THF in the electrochemical cell
 • Use transmutation process to crystal from different adduct

![Conductivity of Electrolytes Graph]

Courtesy of Ardica/SRI presentation
Current Progress: Alane from TEA Adduct

- Using THF/LiAlH4 or THF/NaAlH4 electrolytes are an order and half of magnitude more conductive than ether/LiAlH4 electrolyte
- However, Alane forms too stable of an adduct which makes it difficult to break into AlH₃ crystals and THF
- We have shown in the past that it is possible to convert alane THF adduct to alane Triethylamine (TEA) adduct and obtain alane*
- Although not to assist in increasing ionic conductivity similar conversion processes was shown by Graetz el.**, using TMA

$$\text{AlH}_3\cdot n\text{THF} + \text{TEA} \rightarrow \text{AlH}_3\cdot \text{TEA} + \text{THF} \uparrow$$

$$\text{AlH}_3\cdot \text{TEA} \rightarrow \text{AlH}_3 (\alpha\text{-Crystals}) + \text{TEA} \uparrow$$

Figure shows the desorption of hydrogen from alane obtained through TEA conversion

Approach: Resolving Issues to Further Lower Cost of Alane

Increasing efficiency and yield by:

A) Recycling materials and additives used in making alane during:
 • Electrochemical process
 • And crystallizations

B) Improve conductivity and explore different adducts:
 • Use THF in the electrochemical cell
 • Use transmutation process to crystal from different adduct

C) Producing alane of high value by producing:
 • Stable alpha alane with Crystal size larger than 5 microns
 • High capacity product that is safe to handled in air and the presence of moisture
Current Progress: Different Phases of Alane

Different Cyclization conditions lead to different phases (e.g. α, α’, β and γ)
Not all phases are suitable storage materials due to their instability and high reactivity

- Only α-phase > 5 micron crystal size is proven to keep its capacity for 10th of years
- The surface of α-phase crystals can be passivated and proven not to react with air or moisture

α’ crystals are unstable nano rods
α cubical crystals
Current Progress: Stable α-Alane and Passivation Process

In order to obtain stable alane powder:

- Alane is washed with ether to dissolve any LiAlH$_4$ and LiBH$_4$ residues
- LiAlH$_4$ and LiBH$_4$ can be recovered as shown by our group
- 99.9% of LiAlH$_4$ and LiBH$_4$ was recovered from the wash
- Alane surface is passivated using acid and water as it’s been shown by the DOW’s methods
- Unusable and undesired by-products are dissolved and filtered high capacity alane product is obtained

At the beginning of passivation
In order to obtain stable alane powder:

- Alane is washed with ether to dissolve LiAlH₄ and LiBH₄ residues
- LiAlH₄ and LiBH₄ can be recovered as shown by our group
- 99.9% of LiAlH₄ and LiBH₄ was recovered from the wash
- Alane surface is passivated using acid and water as it’s been shown by the DOW’s methods
- Unusable and undesired by-products are dissolved and filtered high capacity alane product is obtained

Toward the end of passivation
Current Progress: Improvement of H₂ Content & Crystal Quality

- SRNL has achieved the crystallization of alane etherate adducts that have a 9.8 H₂ wt% at the 15 g scale
- SRNL is working with partners including Ardica, SRI, Albemarle, and other to better understand the crystallization process and enable scale-up of production to meet demand for portable power systems
- Work is ongoing to optimize the yield
- Utilizing process analytical to understand and control formation kinetics and thermodynamics

Graphs and images showing TGA/RGA data, SEM image, and XRD confirming α-alane formation.
Collaborations and Team members

SRNL
- Ragaiy Zidan
- Scott McWhorter
- Rob Lascola
- Joseph Teprovich
- Patrick Ward
- Scott Greenway
- Ted Motyka

Ardica
- Dick Martin

and SRI
- Robert Wilson
- Mark Petrie
- Steve Crouch-Baker
Remaining Challenges and Barriers

- Identify additives to further improve the conductivity of the electrolyte solution to increase the rate of alane production

- Develop improved understanding of crystallization processes for improved thermal control and processing kinetics

- Optimize the crystallization parameters for the large scale production of alpha alane

- Obtain high yield from alternative adduct
On-Going and Future work

- Using THF as solvent in electrolyte to increase conductivity

- Establishing efficient methods for crystallization of alane from different adducts such as TEA or TMA to enable the use of THF in the electrolyte

- Exploring using additives to the electrochemical cell which can increase the conductivity further

- Using *in-situ* spectroscopy (e.g. Raman) to identify the crystallization mechanisms

- Establishing advanced process analytical techniques that enable a continuous large-scale alane production operation
Summary

• Identified and addressed the most significant costs for the production of α-alane

• Demonstrated recovery techniques for the expensive crystallization additives to reduce cost of alane production

• Demonstrated the formation of LiH during the electrochemical production of alane that further reduces dendrite formation

• Demonstrated a route to crystallize the alternative adduct produced by a transamination reaction from the THF adduct that enables the use of high ionic conductivity electrolyte

• Demonstrated production of high hydrogen content alane (9.8 wt%) at 15 g scale with high improved crystal quality