Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks

P.I. DAVID W. GOTTHOLD

Pacific Northwest National Laboratory
June 9, 2016

Project ID # ST101
Overview

Timeline

- Start date: Jan 2012
- End date: September 2016
- Percent complete: 90%

Budget

- FY16 DOE Funding: $387K
- Total project funding: $2,625K
 - DOE share: $2,100K
 - Contractor share: $525K (20%)

Barriers

- E: System Cost
 - Alternate low cost resin
 - Improved winding efficiency
 - Cold gas storage
- G: Materials of Construction
 - Alternate resin and fibers
- J: Thermal management
 - Low cost insulation for cold gas

Partners

- Hexagon Lincoln
- Toray CFA
- AOC, LLC
- Ford Motor Company
System Cost Analysis Study
2013 DOE Hydrogen Storage Record

70MPa Compressed Gas Storage System
Single tank holding 5.6kgH₂ total, cost in 2007$

500k System per Year
System Cost: $3,134
$600/kgH₂
$17/kWh

Onboard automotive hydrogen storage system cost targets:
- 2020 - $10/kWh of useable H₂
- Ultimate - $8/kWh of useable H₂
Project Approach and Accomplishments

Approach: Improve individual constituents of **materials**, **design** and **operating conditions** to synergistically enhance tank performance and reduce cost.

700 bar compressed tanks can meet the DOE targets except: **cost, volumetric capacity, and weight**

- **Material Selection**
 - Reduce material cost
 - Increase performance

- **Tank Design and Manufacturing**
 - Better material use
 - Improve efficiency

- **Operating Conditions**
 - Reduce pressure
 - Increase density

Options
- Alternative low cost resin
- Resin with nano-particles
- Optimize fiber pattern
- Mix different fiber types
- Cold gas storage concept
FY15 Milestones

<table>
<thead>
<tr>
<th>Milestone Name/Description</th>
<th>End Date</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact and burst testing of Hexagon Lincoln reference tanks with new resin system</td>
<td>12/31/15</td>
<td>Quarterly Milestone (Stretch)</td>
<td>Complete</td>
</tr>
<tr>
<td>Demonstrate low cost insulation performance for cold gas storage and demonstrate feasibility of modified fibers and resins at enhanced operating conditions</td>
<td>3/30/16</td>
<td>Quarterly Progress Measure (Regular)</td>
<td>Complete</td>
</tr>
<tr>
<td>Burst testing of demonstration tanks at 200 K and build of an insulated tank to demonstrate thermal characteristics.</td>
<td>6/30/16</td>
<td>Quarterly Milestone (Stretch)</td>
<td>In progress</td>
</tr>
</tbody>
</table>

FY16 Major Accomplishments:

- Low cost resin alternative tested for fatigue and impact performance
- Nanoparticle reinforced resin tanks tested
- Low temperature testing of all key materials for tank and system
- Burst testing of low temperature tanks
- Enhanced operating condition insulation tested
Vacuum Vessel Insulation Cost, Volume, and Mass

- TIAx performed cost analysis of the vacuum vessel insulation for the LLNL Gen-3 cryo-compressed tank (Lasher, 2010).
- Aceves et al (2010) lists the Gen-3 tank dimensions and the added mass and volume of the vacuum insulation system.
- This information used to estimate the multi-layer insulation cost as $135/m² of the pressure vessel surface area.
- The cost estimate includes insulation wrapping plus initial evacuation.
- Vacuum vessel cost estimated as $26.6/m² of the vacuum vessel surface area.
- Added mass and volume scaled based on the insulation volume.
- Cost analysis by PNNL (HSECoeE) and SA showed similar insulation costs with slight differences in material and processing cost.

Reinforced Resins Have Not Improved Burst Strength to Date. Fiber Type and Winding Pattern Near Optimum.
Technical Accomplishment - Resin Improvements and Modifications

- Develop vinyl ester resin
 - Lower cost alternative to epoxy
 - Viscosity and gel time to match Hexagon Lincoln’s winding process
 - T700 standard sizing and tow
 - Smaller tow (12k) with sizing selected for VE resin

- Modify resins with nanomaterials
 - Tested two materials in full tanks
 - Carbon – Ashbury Nano 307
 - Silica Nano Fibers (SNF)
 - No improvement observed, but large increase in burst variation
 - Continuing to evaluate other commercial resin additives

<table>
<thead>
<tr>
<th>Target Savings</th>
<th>Demonstrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cost Resin</td>
<td>$0.5/kWh</td>
</tr>
<tr>
<td>Resin Modifications</td>
<td>$0.7/kWh</td>
</tr>
</tbody>
</table>
Alternative VE Resin Shows Excellent Results

- Polyvinyl ester resins are considered for use to save cost ~ 60% the cost of epoxy and are commonly used in bath fixtures, ships, wind blades, etc.

- Multiple resins have been explored for compatibility

- Final resin system is the XR-4079 vinyl ester resin based on T015 and modified to have reduced tackiness

- Burst pressure of XR-4079 tanks equal to or higher than epoxy tanks with identical wind pattern and fiber content
ACCOMPLISHMENTS

TANK BURSTS – BASELINE VS XR-4079

<table>
<thead>
<tr>
<th>Tank #</th>
<th>Baseline</th>
<th>VE with standard T700</th>
<th>VE with 12K fiber FOE sizing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burst relative to baseline avg</td>
<td>Weight (lbs)</td>
<td>Burst relative to baseline avg</td>
</tr>
<tr>
<td>1</td>
<td>98.6%</td>
<td>74.5</td>
<td>103.0%</td>
</tr>
<tr>
<td>2</td>
<td>97.6%</td>
<td>75.2</td>
<td>92.8%</td>
</tr>
<tr>
<td>3</td>
<td>101.7%</td>
<td>71.9</td>
<td>102.7%</td>
</tr>
<tr>
<td>4</td>
<td>99.7%</td>
<td>72.0</td>
<td>101.4%</td>
</tr>
<tr>
<td>5</td>
<td>100.0%</td>
<td>72.2</td>
<td>96.0%</td>
</tr>
<tr>
<td>6</td>
<td>102.3%</td>
<td>73.0</td>
<td>101.1%</td>
</tr>
<tr>
<td>avg</td>
<td>100.0%</td>
<td>73.1</td>
<td>99.5%</td>
</tr>
</tbody>
</table>

5-7% reduction in mass and indication that proper fiber sizing is advantageous
Vinyl Ester Resin: Fatigue and Impact Testing

Additional testing needed for production validation:
- Environmental testing, extreme temperature cycling, flaw tolerance, multiple sizes and aspect ratios, gunfire

Facility changes would be needed to handle styrene vapors
- Increased venting, exhaust treatment, additional automation

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Epoxy Relative Burst</th>
<th>Vinyl Ester Relative Burst</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst</td>
<td>105%</td>
<td>111%</td>
</tr>
<tr>
<td>Cycle A</td>
<td>100%</td>
<td>103%</td>
</tr>
<tr>
<td>Cycle B</td>
<td>99%</td>
<td>95%</td>
</tr>
<tr>
<td>Impact test round 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst</td>
<td>57%</td>
<td>55%</td>
</tr>
<tr>
<td>Cycle A</td>
<td>67%</td>
<td>DNF</td>
</tr>
<tr>
<td>Cycle B</td>
<td>58%</td>
<td>63%</td>
</tr>
<tr>
<td>Impact test round 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst</td>
<td>70%</td>
<td>82%</td>
</tr>
<tr>
<td>Cycle A</td>
<td>55%</td>
<td>74%</td>
</tr>
<tr>
<td>Cycle B</td>
<td>62%</td>
<td>67%</td>
</tr>
</tbody>
</table>
Nanoparticle Reinforced Resins

Average burst pressure is reduced significantly with a large spread in tank performance
May be due to clumping of particles
Continuing to evaluate commercial alternatives

<table>
<thead>
<tr>
<th>Tank #</th>
<th>Carbon Nanoparticles</th>
<th>Nanosilica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burst relative to baseline</td>
<td>Weight (lbs)</td>
</tr>
<tr>
<td>1</td>
<td>70.7%</td>
<td>71.4</td>
</tr>
<tr>
<td>2</td>
<td>97.0%</td>
<td>70.5</td>
</tr>
<tr>
<td>3</td>
<td>87.1%</td>
<td>71.1</td>
</tr>
<tr>
<td>4</td>
<td>93.8%</td>
<td>70.0</td>
</tr>
<tr>
<td>5</td>
<td>76.8%</td>
<td>70.4</td>
</tr>
<tr>
<td>6</td>
<td>98.7%</td>
<td>68.3</td>
</tr>
<tr>
<td>Avg</td>
<td>87.4%</td>
<td>70.3</td>
</tr>
</tbody>
</table>

SNF clump
EDX of cross-section
Technical Accomplishment - Alternate Fiber Placement and Multiple Fiber Types

- Investigate alternate carbon fibers
 - Evaluate performance/price
 - Looked at T720 and T800 fibers
- Look at hybrid fiber reinforcement
 - Some materials give strength
 - Some materials address durability
- Look at layering options
 - Higher modulus materials on outside to improve load share with inner layers
 - One material for helical layers, one for hoop layers

<table>
<thead>
<tr>
<th>Target Savings</th>
<th>Demonstrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Fiber Placement</td>
<td>$0.4/kWh</td>
</tr>
<tr>
<td>Multiple Fiber Types</td>
<td>$0.4/kWh</td>
</tr>
</tbody>
</table>
Alternate Fiber Placement and Multiple Fiber Types

- A range of different layups were tested, but all failed at lower pressures than anticipated.
- New failure model identified that explains failure when there is a high shear component.
- Current tank design is likely near a local optimum and further improvements will require substantial new efforts in modeling with limited chance of success.
- Multiple fiber types can be integrated, but currently, cost/performance is balanced.
 - Lighter tanks, but increased price outweighs mass savings.
 - T720 and T800 tanks showed 6.7% and 10.1% mass reduction, but overall cost increase.
Technical Accomplishments: Enhanced Operating Conditions

- Assess the operating condition alternatives
 - Target temperature is 200K (-73°C) based on HDPE Tg.
- Pros
 - Allows equivalent density at lower pressure which reduces the carbon fiber and cost
 - Lower pressure allows for a thinner, lighter, efficient pressure vessel
- Cons
 - Insulation is required to maintain temperature and extend dormancy, which reduces the cost and volume benefits
 - Requires alignment with gas delivery infrastructure

<table>
<thead>
<tr>
<th>Current H₂ Tank</th>
<th>Enhanced H₂ Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Conditions</td>
<td>700 bar at 15°C</td>
</tr>
<tr>
<td>H₂ Density</td>
<td>40 g/l</td>
</tr>
<tr>
<td>Tank Mass</td>
<td>93.6 kg</td>
</tr>
</tbody>
</table>
Technical Accomplishment - Enhanced Operating Conditions: Composites

- Short beam shear measurements were carried out on HL PVE resin (L046) ASTM ring sections as compared to epoxy baseline (L047)
 - All SBS composite samples showed a general increase in strength as temperature decreased over this range
 - The baseline epoxy outperforms the PVE at all temperatures, but more strongly at cold temperatures
 - PVE appears to peak in strength at -100 C, near the EOC, but even -129C is stronger than RT

250bar VE tanks burst tested at 200K by Cimarron Composites. Good average pressure, slightly high variation

<table>
<thead>
<tr>
<th>Tank</th>
<th>Burst (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>731.6</td>
</tr>
<tr>
<td>2</td>
<td>704.6</td>
</tr>
<tr>
<td>3</td>
<td>759.7</td>
</tr>
<tr>
<td>4</td>
<td>753.7</td>
</tr>
<tr>
<td>5</td>
<td>674.5</td>
</tr>
<tr>
<td>6</td>
<td>660.5</td>
</tr>
<tr>
<td>Average</td>
<td>714.1</td>
</tr>
</tbody>
</table>
Technical Accomplishment - Enhanced Operating Conditions: thermoplastics

- Modulus generally increases with decreasing temperature.
- Most materials show a ductile-brittle transition based on their glass transition temperature(s).
- Some materials (nylon) are not suitable for EOC at 200K.
Insulation for cold operation

- Advanced physical insulation such as vacuum insulation panels (VIP) will likely be the only physical insulation capable of achieving required dormancy.
- VIP material typically vacuum packaged fumed silica (FS) in stiff board-like configuration – most aluminized mylar packaging.
- Quilted (non vacuum packaged, VP) material also available – would need to vacuum package after tank wrap.

Quilted FS (not VP) VIP-AM (vendor 1) VIP-AM (vendor 2) VIP (vendor 2)
Tank Dormancy Tests

- We are in the process of carrying out tank dormancy tests of advanced physical insulation.
- Test is with advance aerogel insulation blanket 3” thick
- 12.5 kg sand approximates H₂ thermal mass
- VIP panels on order expected to have ~3.5 x thermal resistance
- Tank recovers to room temperature within approximately 60-80 hr – 2.5-3 days, empty tank is 2 days
Program Results

- >80 tanks built and tested
- Low cost resin alternative developed with $0.5/kWh savings
 - Improved burst strength compared to standard epoxy resin
 - Nano-particulates tested, but show increased burst variation
- Alternate winding patterns tested
 - Identified improved failure criteria that must be used to accurately predict failure where there is a high shear component
 - Current design is likely near optimum
- Material testing at cold gas operating condition in progress
 - VE and epoxy resins both show improved strength at 200K
 - VE tanks burst at 200K, show good average burst (714 bar) but slightly higher variation than reference tanks, 6% vs. 2-3% for standard tanks
 - Multiple insulations in test
- Along with ANL, supported Strategic Analysis’ work to update the standard cost model
FY15 Comment: However, the relationship of fiber, resin and process beyond
only burst strength is a key element that is not being addressed by the
approach. The absence of this understanding (impact, cycle, etc.) may lead
to a retraction of the learning to date and may force a new look into
the winding process and/or fiber reinforcement.

- Testing the VE tanks for fatigue and impact was added to the project for this year
 and showed positive results. Additional testing has been identified that would be
 needed to continue to move this new resin into production, including more testing
 of different tank sizes and diameters, rapid impact (gunfire), extreme temperatures,
 and drop testing.

FY15 Comment: While the development of a 200K storage vessel will
potentially reduce system mass and volume as well as potentially cost, issues
relating to mechanical behavior over the desired operating conditions and
identification of suitable effective insulation materials have not yet been
clarified.

- This has been a focus of this year, with work on evaluating material and full tank
 properties at low temperatures as well a insulation validation.
Collaborations

► Pacific Northwest National Laboratory: David Gotthold (PI), Ken Johnson, Kyle Alvine, Matt Westman, Tim Roosendaal, Mike Dahl
 - Project management, material and cost models, resin modifications

► Hexagon Lincoln: Norm Newhouse, Alex Vaipan
 - Tank modeling, tank fabrication, tank and materials testing

► Ford Motor Company: Mike Veenstra, Dan Houston
 - Enhanced operating conditions, cost modeling, materials testing

► AOC Resins: Thomas Steinhausler, Mike Dettre
 - Resin system design and materials testing

► Toray Carbon America: Anand Rau*
 - Carbon fiber surface modification and testing
 - *currently Crosslink Technologies
Proposed Future Work

Remainder of FY16

- Complete low temperature materials testing for cold gas operation
- Complete advanced physical insulation testing for cold gas operation
- Complete dormancy tests for cold gas operation with full tanks
- Burst tests on tanks using commercial nano-resin

Suggestions for future research areas

- Continue to identify low cost, high performance alternative insulation useful for both cold gas and cryo-compressed tank systems
- Compact and low power active cooling to enable longer dormancy
- The cost/benefit analysis of mixing different fibers will likely continue to evolve as new products and manufacturers mature.
- Commercial resin additives may yet demonstrate improved performance for 500/700bar tanks
Project Summary

Relevance: Reducing pressure vessel cost, mass, and volume

Approach: Establish baseline cost and reduce tank costs and mass through engineered material properties through efficient use of carbon fiber

Technical Accomplishments: Built >80 tanks to evaluate actual performance of previously modeled performance improvements. Evaluated nanoparticle reinforced resin. Extended testing of VE resin tanks to include impact and fatigue. Low temperature materials testing

Technology Collaborations: Active collaborations with Hexagon Lincoln, Ford Motor Company, Toray CFA, and AOC, LLC

Proposed Future Research: Improved insulation for low-temp operation. Evaluation of commercial resin additives
Technical Backup

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Technical Accomplishment – Prototype Tank Fabrication and Testing

<table>
<thead>
<tr>
<th>Description</th>
<th>Actual Rel. to Baseline</th>
<th>Estimated Values Based on Mass Scaling with Pressure 100% Burst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mass</td>
<td>Burst</td>
</tr>
<tr>
<td>Baseline</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Low Cost Resins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline + Resin 1 Substitution</td>
<td>95.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Baseline + Resin1+12kT700+Alt. Sizing</td>
<td>93.2%</td>
<td>101.2%</td>
</tr>
<tr>
<td>Modified Resins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline + Resin 1 + Nano Mod 1</td>
<td>Tanks Wound, awaiting Burst Testing</td>
<td></td>
</tr>
<tr>
<td>Baseline + Resin 1 + Nano Mod 2</td>
<td>Tanks to be Wound and Burst</td>
<td>2.8</td>
</tr>
<tr>
<td>Fiber Winding Patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted HAhs, Interspersed with LAH</td>
<td>95.0%</td>
<td>91.0%</td>
</tr>
<tr>
<td>Sorted HAhs, No Interspersion</td>
<td>88.0%</td>
<td>83.0%</td>
</tr>
<tr>
<td>Baseline with 1 Adj Removed</td>
<td>96.0%</td>
<td>95.0%</td>
</tr>
<tr>
<td>Baseline with 2 Adj Removed</td>
<td>91.0%</td>
<td>88.0%</td>
</tr>
<tr>
<td>Alternative Fibers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline with T720 Substitution</td>
<td>96.2%</td>
<td>104.0%</td>
</tr>
<tr>
<td>Baseline with T800 Substitution</td>
<td>98.7%</td>
<td>112.6%</td>
</tr>
<tr>
<td>Baseline with fiber hybrid structure</td>
<td>Not Manufactured, Modeling indicated minimal improvement</td>
<td></td>
</tr>
</tbody>
</table>

- Tank masses reported for input to standard cost and tank models by SA & ANL
- Data reported as tank testing progressed
- Tank mass and burst pressure reported relative to baseline tank design
- Carbon fiber and resin scaled to estimate tank mass and cost to achieve 100% of the target burst pressure
COMPRESSED H2 CONTAINER EFFICIENCY

Storage for constant outside envelope as a constraint from the automotive industry

Compressed Hydrogen Container Efficiency

1) Calculations based on maintaining an unpressurized container envelop of Ø 410 mm x 1016 mm. B. Yeggy

April 16
Gen-3 Cryo-Compressed Tank at Cryo and Cold Gas Conditions

Materials Challenges:

- **Insulation**
 - Cost must be less than carbon fiber reduction
 - Thickness should match tank diameter reduction

- **Liner**
 - Thermal expansion limits filling when cold
 - Tg may limit lower temp
Enhanced Operating Conditions – polymer test plan

<table>
<thead>
<tr>
<th>Use</th>
<th>Material</th>
<th>Reported Useful Temp Range, °C</th>
<th>T_g, °C</th>
<th>T_m, °C</th>
<th>Linear CTE, 10^-5/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Seals</td>
<td>Viton</td>
<td>-23 / +204</td>
<td>-20</td>
<td>260</td>
<td>8.3 – 10.5</td>
</tr>
<tr>
<td></td>
<td>Nitrile Rubber (Buna-N)</td>
<td>-34 / +250</td>
<td></td>
<td></td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Teflon (PTFE)</td>
<td>-100 / +260</td>
<td>115</td>
<td>335</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>EPR (ethylene-propylene-rubber)</td>
<td>-62 / +160</td>
<td>-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorosilicone</td>
<td>-59 / +232</td>
<td>-50</td>
<td></td>
<td>81 (low Temp)</td>
</tr>
<tr>
<td></td>
<td>Silicone</td>
<td>-62 / +216</td>
<td>-50</td>
<td></td>
<td>18 – 25.5</td>
</tr>
<tr>
<td></td>
<td>Neoprene</td>
<td>-40 / +121</td>
<td>-43</td>
<td></td>
<td>61 - 72</td>
</tr>
<tr>
<td>Valve Pistons</td>
<td>PEEK</td>
<td>/ +250</td>
<td>143</td>
<td>343-374</td>
<td></td>
</tr>
<tr>
<td>Valve Seats</td>
<td>Nylatron</td>
<td>/ +105</td>
<td></td>
<td>260</td>
<td>6.3 – 10.6</td>
</tr>
<tr>
<td></td>
<td>Vespel</td>
<td>-100 / +500</td>
<td>none observable</td>
<td>none observable</td>
<td>2.7 – 5.4</td>
</tr>
<tr>
<td>Tanks:</td>
<td>PCTFE</td>
<td>-100 / +500</td>
<td>45</td>
<td>215</td>
<td>7</td>
</tr>
<tr>
<td>Resin</td>
<td>Epoxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibers</td>
<td>Carbon Fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass Fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kevlar Fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liner</td>
<td>HDPE</td>
<td>-110</td>
<td>130</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>PPS (polyphenylene Sulphide)</td>
<td>/ +220</td>
<td></td>
<td>282</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Nylons</td>
<td>50</td>
<td>255</td>
<td></td>
<td>8-10</td>
</tr>
</tbody>
</table>
New Failure Criteria Accurately Predicts Failure Conditions

Hexagon Lincoln correlating observed burst performance with Yamada-Sun combined strain failure criteria.

- $\varepsilon_1 = \text{Uniaxial strain}$
- $\varepsilon_{12} = \text{Shear Strain}$
- $X_1 = \text{Uniaxial failure strain}$
- $S_{12} = \text{Shear failure strain}$

Fitting shows baseline and tailored wind patterns have failure strains on the circular arc where X and S are nearly the same.

$$\left(\frac{\varepsilon_1}{X_1}\right)^2 + \left(\frac{\varepsilon_{12}}{S_{12}}\right)^2 = 1$$