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Overview (LBNL)

Timeline

Project start date: 09/21/2015
Phase | end date: 09/30/2018

Barriers addressed

» Lack of understanding of hydrogen
physisorption and chemisorption
(Barrier O)

« System weight and volume (Barrier A)

» Charge/discharge rate (Barrier E)

Budget

FY15 DOE Funding: $250K
FY16 Planned DOE Funding: $590K
Total Funds Received: $840K

Team

Funded Partners:

Sandia National Laboratories (lead)
Lawrence Livermore National Laboratory



Relevance and Objectives

HyMARC will provide community tools and foundational understanding of phenomena governing
thermodynamics and kinetics to enable development of solid-phase hydrogen storage materials
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Quantum Monte Carlo for sorbents

DFT and ab initio molecular dynamics
for bulk/surface/interface chemistry

Classical MD & kinetic Monte Carlo for
non-equilibrium transport

Phase-field modeling for solid-state
phase transformation kinetics

Computational spectroscopy

Community software & databases
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Controlled synthesis
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Motal hydride
nanoparticle

Metal organic framewaorks (MOFs)

Hierarchical integrated bulk and nanoscale
metal hydrides

High-pressure synthesis

Functionalized carbon encapsulants and
porous nanoconfining media

Sorbent suite for model testing and
validation
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In situ characterization

500 nm

—— TEY (Surface)
--- TFY (Bulk)

incident ion
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Ambient-pressure XPS

Soft X-ray absorption and emission
spectroscopy

Electron microscopy and X-ray
spectromicroscopy

Low-energy ion scattering for surface
hydrogen detection




Relevance (LBNL-specific): Materials by Design coupled
with Advanced Characterization and Modeling

Project Objectives, overall:

* Focus on light materials and synthesis strategies with fine control of nanoscale
dimensions to meet weight and volume requirements via encapsulation, confinement
(A)

* Design interfaces with chemical specificity for thermodynamic and kinetic control (E)
of hydrogen storage/sorption and selective transport

* Explore novel storage concepts and/or obtain fundamental understanding of
“established” processes via known/idealized systems/materials (O)

* Develop in situ/operando soft X-ray characterization capabilities in combination with
first-principles simulations to extract atomic/molecular details of functional materials
and interfaces (O)

* Refine chemical synthesis strategies based on atomic/molecular scale insight from
characterization/theory

Establish expertise and capabilities for the hydrogen storage community
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Relevance: Encapsulated metal hydrides, Lewis acid-base
sorbents, MOF isotherms

FY16 Project Objectives:

* Establish rGO/Mg as new system to
understand transport at heterogeneous
solid/solid interface

* Synthesize & characterize hybrid Mg-NP
and functionalized GNRs — platform for
new type of additive using GNR chemistry

* Understand and measure hydrogenation
kinetics: assess performance of GNR as

H-Storage
Material
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Approach: HyMARC Tasks Target
Thermodynamics and Kinetics

Thermodynamics &

? Surface chemistry J’

Adsorption/d ti
(Adsomfion/desorphion) Surface/interface/ %
grain boundary

(Dissociation/association)
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diffusion
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Additives ——

hase nucleation &

Task 1: Thermodynamics
Task 2: Transport

Task 3: Gas-surface interactions
Task 4: Solid-solid interfaces
Task 5: Additives and dopants
Task 6: Materials informatics



Technical Approach: Contributions of LBNL to HyMARC,
Integration Across All Tasks, Access to All Labs

Tasks LBNL Team:
2,3,4,5 Jinghua Guo (jguo@Ibl.gov): X-ray synchrotron spectroscopy (Tasks 2-5)
2,3,4,5 David Prendergast (DGPrendergast@Ibl.gov): Computational spectroscopy (Tasks 2-5)
1,4 Jeff Urban (jjurban@Ilbl.gov): Phase transitions and nanoscale effects in hydrides
1,5 Gabor Somorjai (gasomorjai@Ibl.gov): Functional sorbents
1 Felix Fischer (ffischer@Ibl.gov): Functionalized graphene nanoribbons
6 Maciek Haranczyk (mharanczyk@Ibl.gov): Materials genome for porous materials

Entire HyYMARC Team accessing LBNL BES User Facilities
Egﬁﬁ%ﬁﬂﬂ The Molecular Foundry (TMF):
* synthesis, characterization, and simulation of nanoscale materials/interfaces
* National Center for Electron Microscopy
* access to supercomputing (NERSC) through existing Foundry allocations
AL@ Advanced Light Source (ALS):
G i » Soft X-ray absorption/emission spectroscopies (XAS/XES) — in situ
* Ambient Pressure XPS
e Scanning Transmission X-ray Microscopy (STXM) and Ptychography
Active user projects at TMF and ALS and Approved Program Proposal @ ALS
* partnership to foster a new soft X-ray H, storage user community
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Technical Approach: Matched Novel Synthesis,
Characterization, and Modeling for Storage Materials

Theory & Design of Characterization Synthesis & Performance
Storage Materials Evaluation
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Air-stable GNR-Mg

* Enabling approach: secure user projects to Molecular Foundry and ALS

* Innovative synthetic routes to metal hydrides and hybrid nanoscale systems that will
reveal key phenomena governing H, release/absorption and motivate new H, storage
materials

* Developing new acid/base concepts to modify the enthalpy of H, binding in sorbents

* Creating algorithms to enable computation of H, isotherms in framework materials

* In-situ spectroscopic and structural characterization techniques that establish the role
of interfaces in controlling H,-storage reaction mechanisms and pathways;

e X-ray spectroscopy interpretation models that allow structural, chemical and dynarmt\‘
study of interfaces and additives in H, storage reactions. I-l’J ceeed] A
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Planned Milestones and Status: FY16 and FY17

Q1: (S) Synthesize library of bulk-phase model storage systems for T1-T5

T1: Synthesize and characterize stable metal hydrides to match computation efforts (100%)

T1: Synthesize and characterize graphene nanobelts with targeted moities (100%)

T1: Synthesize and characterize new classes of mesoporous zeolites using acid-base concept (100%)
T1: Study GCMC simulations of absorption isotherms in open framework materials(100%)

Q2: (S) Demonstrate size control method for one prototype complex hydride nanostructure
T1: Perform reaction kinetics studies to determine design rules for nanoconfined metal hydrides (50%)

Q3: (C) Demonstrate in-situ soft X-ray AP-XPS, XAS, XES tools, with sample heating

T3, T5: Performed XAS spectroscopy of hydrides and dopants at LBL/ALS (50%)

T2: Perform first principles simulated X-ray spectroscopy to interpret synchrotron data (50%)
T3, T5: Indicate feasibility of STXM to study interface dynamics (50%).

Q4: (C+T) Identify hydride mobile species and diffusion pathways

T5: Begin development of KMC framework for interface/amorphous transport (100%)
T5: Assessment of acid-catalyzed moities for modifying sorbent enthalpies (50%)

T5: STM studies of catalytic sites before/after H2 exposure (20%)

T5: synthesize catalytically functionalized GNRs (70%)

Q4: (S+C) Synthesize library of nanoparticles: 1 =5 nm, 5—10 nm, > 10 nm for one prototype hydride
T1-T5: Select model materials for facilitating experiment-theory feedback within each task (50%)



Task 1 Accomplishment: Multilaminates of Mg
Nanocrystals and Reduced Graphene Oxide (rGO-Mg)

Achievement: Light-weight (few layers GO) air-stable
high-performance (~7wt% full composite) rGO-Mg

T1 Milestone: Very stable well-controlled hydride
system for matching computational studies

H, wt. % in rGO-Mg
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Task 1, 3 Accomplishment: Synthesized Mg-GNR
Composite Material

* T1 milestone: A flexible GNR-based matrix has been developed that stabilized high
surface area reactive Mg nanoparticles without preventing H, transport processes.

Stabilization of highly reactive metal Exhaustive and reversible H,
NPs by GNR matrix absorption/ desorption

After 3 months

_ After H, cycle
air-exposure
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Task 1, 5 Accomplishment: Absorption/Desorption

Kinetics Correlate with Functionalization of GNRs

* T1,5 accomplishment: Chemical functionalization of the GNR matrix has a direct
influence on the absorption and desorption kinetics. Potential synthetic handle to tune
the performance of H, storage material.

Maximum Capacity

GNR-1 7.1% -6.7 %
GNR-2 7.3 % -7.0 %
GNR-3 7.2 % -6.9 %
GNR-4 7.3 % -6.8 %

Activation Free Enthalpy
| Absorption | Desorption
GNR-1 91.8 kJ/mol 160.0 kJ/mol
GNR-2 85.3 kJ/mol 172.2 ki/mol
GNR-3 91.5 ki/mol 130.4 kJ/mol
GNR-4 90.4 kJ/mol 156.0 kJ/mol
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Task 5 Accomplishment: 3d-Transition Metal (TM)
Doped rGO-Mg

Milestone: 5 mol.% TM dopants enhance H, sorption

kinetics without sacrificing the high H, capacity of rGO-Mg
Hydrogen absorption of rGO-Mg with
different TM dopants at 200 °C and 15 bar of H,

Representative crystal structure of
TM doped rGO-Mg
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Task 5 Accomplishment: Meso- and Micro-porous silica
with Al grafting for acid catalyzed sorption

Aluminum grafting of meoporous silica support

0.0 H o H” Physisorption of N, at LN, temp
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Task 3,4,5 Accomplishment: Established soft X-ray

spectral signatures for Na and Al compounds

Soft X-ray (Na and Al K-edge) X-ray absorption
spectra measured for various “standards”

or model systems as references for future
in-situ XANES of working materials

Bulk (TFY) and surface (TEY) sensitive
measurements possible. TFY requires
corrections for self-absorption

—— TEY (Surface)
Na K—cdge .- TFY (Bl]]k)

NaK-edge — IEY (Surface)
L e TRFY Bulk)

— maybe not an issue for porous frameworks
or encapsulated nanoparticles

Incoming
X-rays

Fluorescence
Yield

Samples: Vitalie Stavila and Mark Allendorf
XAS measurements: Jinghua Guo and Yi-Sheng Liu

Simulations: David Prendergast, Craig Schwartz, Jan Aeschlimann
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Accomplishment: Predictive first-principles method
for interpretation of Na and Al K-edge XANES

Peak positions .l
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But experiment indicates
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local Al chemistry
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Accomplishment: Predictive first-principles method
for interpretation of Na and Al K-edge XANES

Peak positions .l
gualitatively
0.8 +
reproduced -
S 06 |
L- h .5
ine-shape = o4
agreement 2

0.2

finite T produces 0
pre-edge features

Theoretically Al K-edge 35 |
of Li and Na alanates 3|
almost identical (AlH,) . |

But experiment indicates
presence of different
local Al chemistry
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Collaborations external to HyMARC

Aaron Thornton (CSIRO Australia) and Berend Smit
(UC Berkeley/EPFL)

"High-throughput computational screening of MOFs”

University of Cape Town (South Africa). In situ time
resolved XRD of GNR-Mg composites during

absorption/desorption at process relevant pressures
and temperatures.

Extensive collaborations within and across HyMARC



Remaining Challenges and Barriers

Synthesis of complex hydride nanoparticles and integration
with graphene nanobelts

Understanding the local chemistry of TM-dopants in alanates
and hydrogen coordination with XANES validation

Kinetics: Desorption in Hydrides

High-P H, sorption profiles of Al-grafted porous silica to be
measured in collaboration with SNL

First-principles interpretation of STXM data and in situ XANES



Milestone

Proposed future work

Description

Proposed
completion

1 Continue to work on library of 1-5, 5-10, and >10nm hydride 1 Q4 FY16
particles (67% done)
2 Nanoscaled Metal Borohydride (e.g. Mg(BH,),) for High- 1 Q4 FY16
Capacity Hydrogen Storage (10% done)
3 Initiate plasmonic studies of phase transformation in 4 Q2 FY17
complex hydrides (5% done)
4 First-principles molecular dynamics studies of Ti in LIALH4- 5 Q4 FY16
thermodynamics and kinetics (5% done)
5 Interpretation of encapsulated metal hydride spectroscopy 4 Q4 FY16
and understanding of interfacial electronics (5% done)
6 Lewis acid-Bronsted Base concepts demonstrated in real 3 Q2 FY16
substituted silica templates (50% done)
7 Advance capabilities of in-situ XAS and XANES to enable 3,4 Q2 FY17
phase detection (30% done)




Summary

Berkeley Labs: Funded at start of FY16, Unique suite of synthetic
hydride/graphene nanobelt, sorbent, in-situ X-ray, and modeling tools
supporting HYMARC objectives

FY16 LBNL modeling tasks focused on X-ray interpretation of ALS in-situ
spectroscopy data

FY16 LBNL synthesis tasks focused on establishing key strategies for
integrating metal hydrides with designer graphene nanoribbons

FY16 LBNL characterization tasks focused on X-ray detection of
spectroscopic changes upon hydrogenation (complements LLNL
activities)

Funded beginning FY16, already delivering new materials, publications, IP

We are moving toward complex hydrides and advanced instrumentation
and modeling in FY17
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ALS: X-ray In-situ Characterization of Metal Hydrides

(A) Photon-in/photon-out soft- (B) A conceptual design of
x-ray spectroscopic study Hydrogen cell for in-situ study
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In-situ Characterization of Mg NPs@Graphene

Intensity (Arb. Units)

[
'
'
[
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N2 RoomTemp ,"
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Samples: Jeff Urban and Eun Seon Cho  pnoton Energy (ev)
XAS measurements: Jinghua Guo and Yi-Sheng Liu I_|,J ””} |”'

XAS interpretation (TBD): Prendergast



First-principles simulations of X- ray Absorptlon

Density functional theory _ L| ,0 \E »
° 1 1 _ 3
Fonstralneq excited state (core-hole) 2 [ Lik- edge | |
* include excited electron 5
* Fermi’s Golden Rule for XAS o} S T O
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o(w)=4r’a,hiw Z (W |e-r|W)FS(E,—E,—ho) > b crystal OK -
* inclusion of f|n|te temperature (dynamics) e E
e accurate energy alignment -g - MD 298K
* correct description of defects u_) d.
<C
Predictive method for unknown/mixed phases < Expt.

» explore dopants (e.g. Ti) ' ‘ : :
* solid-solid interfaces/surface chemistry 25 60 65 70 75
* interpretation of in-situ studies | Energy Loss [eV]

ClasswaliQuantum Molecular dynamlcs
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Accomplishment: Hydrogen Sorption for Ni-Doped rGO-Mg

Ni-dopant is most efficient and reproducible for hydrogen sorption

(Task 4&5)

Hydrogen absorption at different
temperatures with 15 bar of H,

H, wt. % in total composite

Time (min)
Ni-doped rGO-Mg is fairly
reproducible in further cycles with
highly enhanced kinetics.

— 25°C
— 50°C
— 75°C
— 100°C
—— 125°C

150°C

——175°C
— 200°C

In-Situ XANES upon 1 bar of H, with
temperature ramping
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Accomplishment: Initial work on in situ XRD
characterization

* Adirect characterization of phase transformation of Mg to MgH, under performance
relevant conditions has been initiated. Further optimization and method development
is required.
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Surface vs. Bulk exploration using
X-ray Absorption Spectroscopy at the ALS

NaAlH4 Density=0.8905, Angle=030.deg
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Screening Sorbents Materials
A Materials Genome Approach

Computationally-Ready
Experimental MOFs

Porous Hypothetical
Polymer Zeolites
Networks
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(1) Thornton, A. et al. EES submitted.
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A set of ca. 850000 porous materials of various
classes was screened to identify materials with
highest hydrogen storage performance

Screening was done by a hybrid simulation-
statistical learning approach, where
performance of each material was predicted
using a neural network model based on
structure descriptors (provided by our Zeo++
code)

Molecular simulations were used to
characterize adsorption (working capacity
between 100 and 1 bar) for materials used to
train the NN model

Grand Canonical Monte Carlo simulations
were done at 77K, using classical UFF
potential for framework atoms and Bush
potential for hydrogen

B

Ty

nn}l |||i'§
i iy |

BEREELEY L



Storage in Strong Hydrogen-Binding MOFs
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(1) Thornton, A. et al. EES submitted.

100

Classical Grand Canonical Monte Carlo
simulations can be used to predict adsorption
isotherms

Investigation of systems, which include Open
Metal Sites (OMS) and are expected to have
high hydrogen-material interaction energy
require specially derived interatomic
potentials

Together with Task 1, we are analyzing the
CORE MOF database to identify
representative MOF materials with OMS
Together with Task 5, we will employ
Quantum Monte Carlo techniques to study
H2-MOF interactions In those materials and
derive refined class-transfarable potentials for
use in GCMC simulations
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