

Hydrogen Component Validation

Danny Terlip National Renewable Energy Laboratory 7 June 2016

Project ID #TV019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline and Budget

- Project start date: 10/2012
- FY16 DOE funding: \$0 (carryover)
- FY17 planned DOE funding: TDB
- Total DOE funds received to date: \$758k

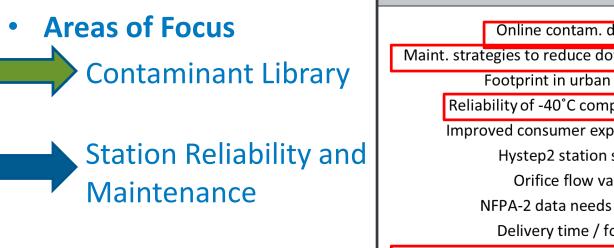
Barriers

Barriers addressed

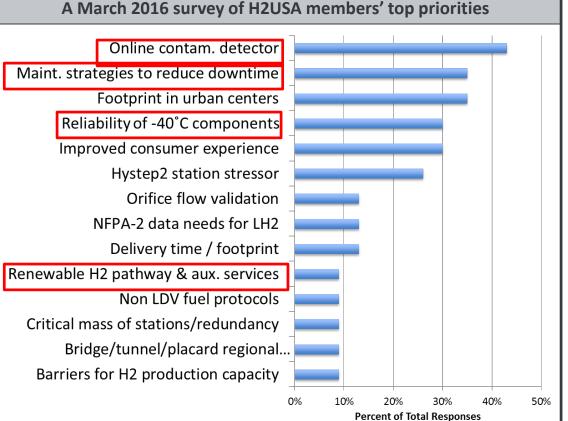
D - Lack of Performance Data (detailed compressor reliability data and analysis)

Partners

SCAQMD


H2Frontiers

- HydroPac
- PDC Sunline
- PPI/Sundyne
- Shell Hydrogen
 ANL
- CSULA


Relevance

Objectives

- Reduce fuel contamination introduced by forecourt station components
- Improve station reliability and uptime
- Increase the publicly available energy and performance data of major station components

Station Power and Energy Demand

Approach – Leveraging Existing Projects

- Leverage current DOE projects at the Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL
 - 700 bar station configured similar to a retail station
 - No retail customer base allows for research space
 - Unfettered access to components
 - Current projects generate data useful to this project

Leverage NREL hydrogen program

- Material Data Screening tools and fuel cell research
- FCEV filling using SAE J2601 T40 protocol
- NFCTEC Composite Data Products (CDPs)
- Safety Codes and Standards group

Approach - Contaminant Research

Collection of contaminants

- Work with forecourt station operators to send samples to NREL
- Identify location of collection and operating conditions

• Deep dive analysis into failures

- Microscopic and other optical techniques
- Corroborate failures with similar components/operating conditions

Milestone: Status report on participation in contaminant collection – 31 March 2016

	Sample Location	Compressor discharge isolation valve
	Reason for taking sample	Known component failure
	Equipment upstream	Diaphragm compressor
	Equipment downstream	Type 2 storage tank
	Estimated sample source	Failed o-ring in air-operated valve
	Date of sample	20 November 2015
	Vial Number	Vial 1

Approach – Maintenance and Reliability

- Logging of all HITRF station events, downtime and resolution – aligned format with NFCTEC standard January 2016
- Monthly station reports
- Sharing data on H2Tools, SOSS and NREL CDPs

🔀 Manual Event Logger									×
CATEGOR	Y	TYPE		SYSTEM		MEDIA			
Maintenance	•	Scheduled	•	Gas Management Panel	•	hydrogen	•	valve-air	•
		ITEM seal	•	FAILURE shredded	•	IDENTIFIER FV-345			ITIME 3 (HRS)
				DESCRIPTION					
		Seal	#234 failure led	to audible hydrogen leak and nec	essitates	replacement			
				LOG TO EVENT FIL	E				

Approach – Station Power and Energy Demand

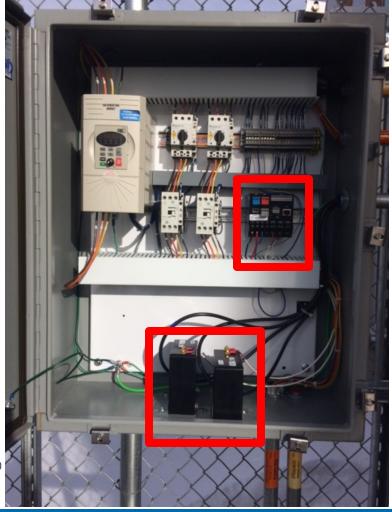
Power Meter Installation

- Hydrogen Pre-cooling Chiller
- 400b Compressor
- o 875b Compressor

• Data comparison with NREL CDPs

Data sharing with station analysis

groups


Voltage, current:	± (0.08% MV + 0.02% MR) ^{1) 2)}
Power:	± (0.16% MV + 0.04% MR) 3) 2)
Power factor:	± 0.1° 4)
Frequency:	± 0.01 Hz
Imbalance U, I:	± 0.5%
Harmonics:	± 0.5%
THD Voltage:	± 0.5%
TDD Current:	± 0.5%
Active energy:	Class 0.5S, EN 62053-22
Reactive energy:	Class 2, EN 62053-23
Measurement with fixed	system frequency:
General	± Basic uncertainty x (F _{konfig} -F _{ist}) [Hz] x 10
Imbalance U	± 1.5% up to ± 0.5 Hz
Harmonics	± 1.5% up to ± 0.5 Hz
THD, TDD	± 2.0% up to ± 0.5 Hz

¹⁾ MV: Measured value, MR: measurement range (maximum)

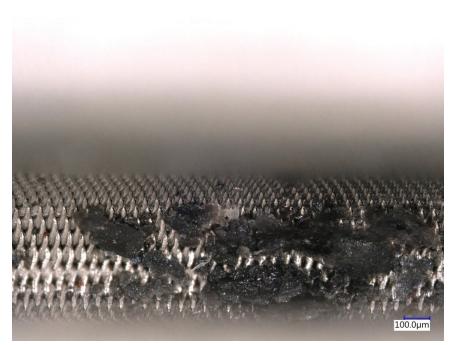
²⁾ Additional uncertainty of 0.1% MV if neutral wire not connected (3-wire connections)

³⁾ MR: maximum voltage x maximum current

⁴⁾ Additional uncertainty of 0.1° if neutral wire not connected (3-wire connections)

Accomplishments - Contaminant Library

Seven forecourt stations participating


New since June 2015

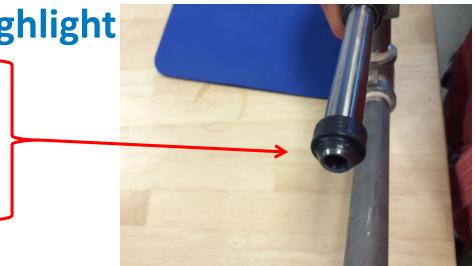
- One external result, multiple NREL results
- Identified H2Tool.org as location for publication of contaminant findings

Seat material from a valve exposed to pre-cooled hydrogen. Metal flakes visible near fracture.

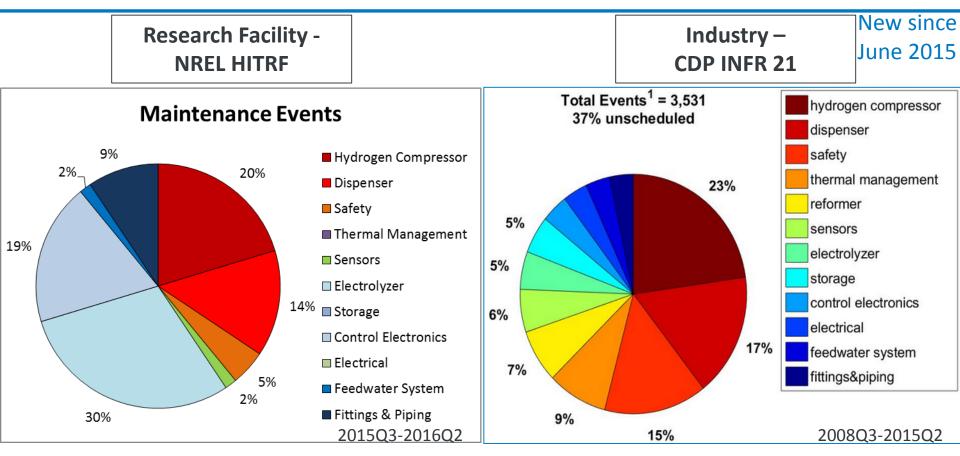
Contents of a filter downstream of the hydrogen precooling system. The material appears to be elastomers

Accomplishments – Contaminant Outreach

- Outreach to three major compressor
 Mew since June 2015
 manufacturers regarding grease materials in use known to degrade fuel cells
 - Refining of best practices
 - Material selection guidance



Hydrogen Service Valve downstream of compressor


Function group contaminant studies

performed at NREL highlight

- Amides
- Sulfur compounds
 - Aromatics (paraffinic)

Accomplishment - Maintenance Data

The HITRF is a research station that focuses on component research rather than servicing FCEV customers, yet <u>compressors</u> and <u>dispensers</u> remain major maintenance burdens

Progress – Maintenance Reduction (NREL)

NREL has the ability to test components in various configurations under retail station conditions and analyze failures more deeply than retail station operators

• Component performance at -40C

- Needle and Air-Operated Valve failures identified
- Failure corroborated with other station operators
- Seal material with a wider temperature range installed, yet failures remain
- Investigating possibility of installing multiple manufacturer components
- Communicating with equipment manufacturers

Accomplishment – Added Capability

New since June 2015

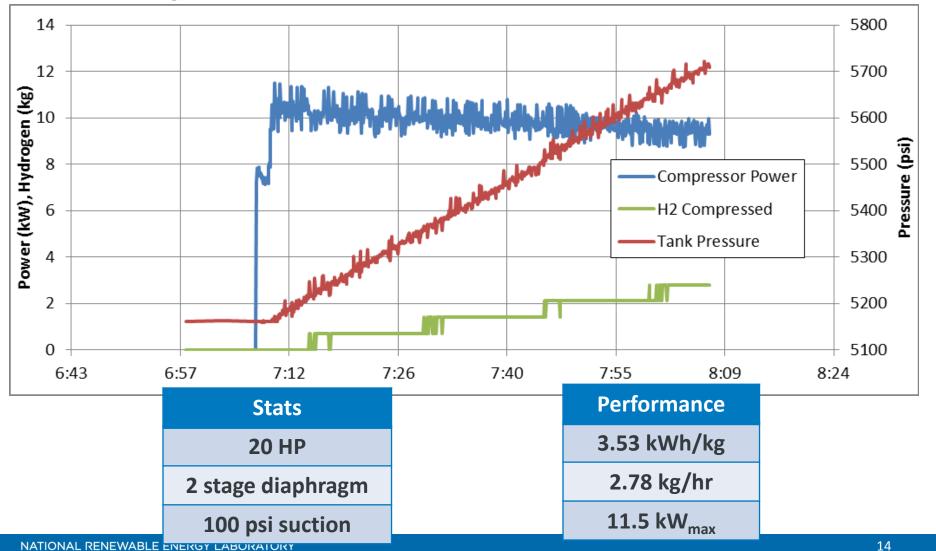
• Linear Piston 900 Bar Compressor Installation

Specification	Value
Inlet Range	12.1-41.3 MPa
Max Discharge	96.5 MPa
Capacity (35 MPa)	140 SCFM
Stages	1
Motor Power	40 hp
Compressor Weight	4,500 lbs

Research Topics Refill Storage

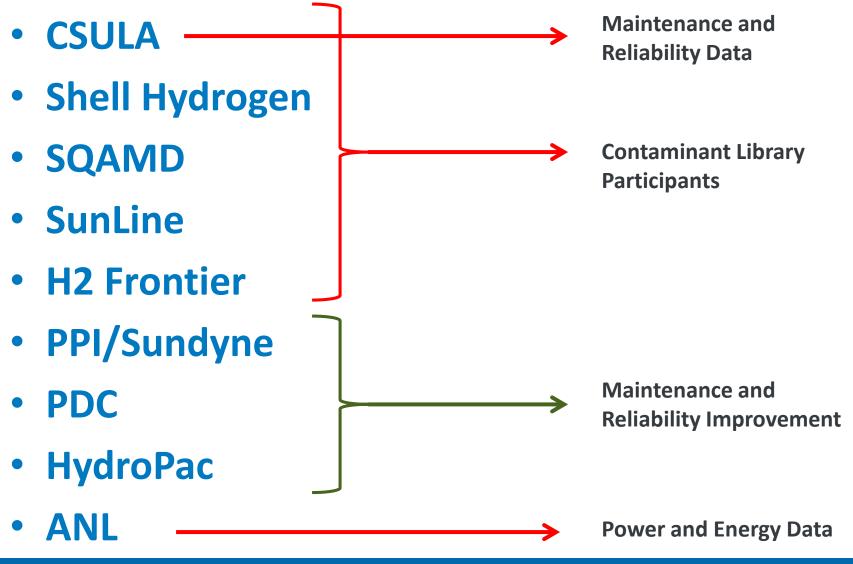
- Energy Demand
- Filling Protocol
- Contamination

Accomplishments - Chiller Performance Data New since June 2015


Data critical to improve modeling accuracy and benchmarking (see PD104 - Elgowainy)

Accomplishments and Progress

New since June 2015

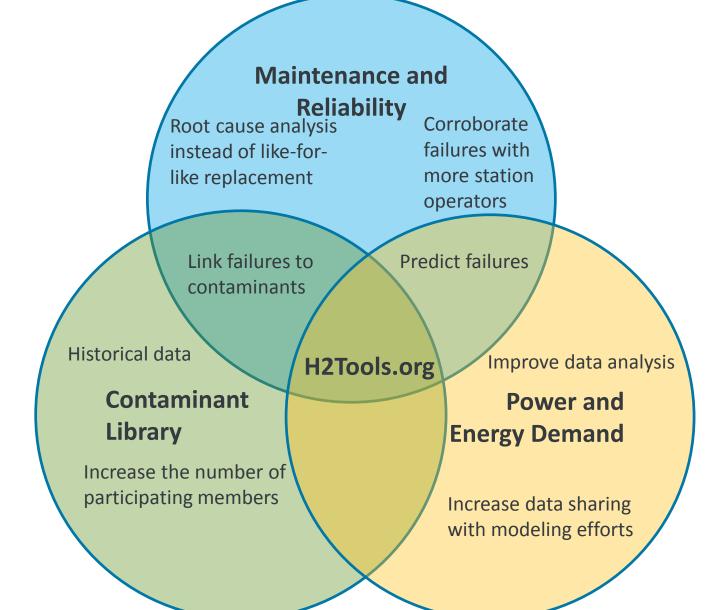

Compressor Performance Data

Accomplishments and Progress: <u>Responses to Previous Year Reviewers' Comments</u>

- "The project should consider testing ionic compressors and Hydro-Pac piston compressors"
 - A Hydro-Pac piston compressor has been installed at HITRF
- "The limited operational data and run time is an area of weakness."
 - NREL now has three compressors in operation and is routinely collecting data on each, as well as numerous other components in the HITRF

Collaborations

Remaining Challenges and Barriers


• Data collection and analysis improvements

- A wealth of data is available through the HITRF and NREL's connection with hydrogen industry
- The local maintenance system at NREL should be improved to collect data in a format more friendly to analysis. This data can then be shared publicly and in near real time.
- Publication of data to stakeholders

Key participation

- More participants are desired for the contaminant library
- Participation is needed from hydrogen component manufacturers

Proposed Future Work

- HITRF unique opportunity for data collection/analysis
 - Contaminant Library field sample collection, analysis and publication
 - Power and Energy Demand analyzing energy costs for major station components
 - Maintenance and Reliability collecting data
- Significant industry interest
- Publish data through H2Tools.org

Technical Back-Up Slides

Technical Backup Slides

• HITRF Reliability Data¹

Component	Hours of Operation	Major Failures
MP Compressor	274	Small leaks
HP Compressor	117	Seals
Misc ²	N/A	Wrong settings and small leaks
Valves	TBD	Seats and seals
Dispenser	8740	Valves and filters
Electrolyzer	~1000	Dew point sensors
Pre-cooling	8752	Clogged

- 1) April 2015 through March 2016
- 2) Miscellaneous items include PSV, PSH, PSL, SV

Technical Back Up

Monthly station maintenance logs

HITRF Monthly Report – March 2016

Highlights

Hydrogen Dispensed	12.7 kg
Hydrogen Produced	175 kg
Station Downtime ¹	11%
Active Projects	INL Stack Testing, Renewable Electrolysis Drying,
	Component Validation Contaminant Collection,
	Hose Reliability

Equipment Log

Equipment Tested	Type of Data	Data Total	Date
Puck Sensor	Functioning?	Yes	3/4/16
PPI MP Compressor CNM-351	Runtime Hours	262:30	3/16/16
HP Compressor CNM-601	Runtime Hours	63:13	3/16/16
Flow Meter	Total H ₂ O Consumption	3320	3/29/16
		Dial read ~ 8.85	
Spare Stacks	Bladder Hydration	Full	3/29/16

Hydrogen Car Fills

Car	Pre-Fill	Post-Fill	Comments	Date
Tuscon	10.0 MPa	70.0 MPa	Interrupted by GMP LFL% alarm, then finished	3/10/16
Highlander	11.9 MPa	66.8 MPa	PT <u>disagree</u> before fill. No problems during	3/15/16
Mirai	15.4%	92%	Fill ended due to low station pressure	3/21/16

Planned Maintenance

What	Planned/Unplanned	Task	Result	Date
Heated N ₂ Purge	Planned	Purge Dryer Bed B	Purged for 63 hours	3/3/16
Desiccant Beds A & C	Planned	Pulled & Replaced	Replaced	3/4/16
Heated N ₂ Purge	Planned	Purge Dryer Bed C	Purged for 15 hours	3/9/16
Heated N ₂ Purge	Planned	Purge Dryer Bed B	Purged for 14 hours	3/10/16

¹ Station downtime is calculated by adding up downtime documented in Misc. Events and dividing by the number of hours in the month

Heated N ₂ Purge	Planned	Purge Dryer Bed A	Purged for 16 hours	3/11/16
Heated N ₂ Purge	Planned	Purge Dryer Bed A/C	Purged for 64 hours	3/14/16

Other Misc. Events

Event	Duration	Result	Downtime	Date
PSH-362 Failed	N/A	Set Point Adjusted Up	1 hour	3/7/16
HV 632 Leak thru	Months	Replaced	1 hour	3/7/16
Equalized HPTank 3	6 hours	Equalized w/ MP Banks A,C	6 hours	3/11/16
PPI Failed to Start	2 days	Replaced motor contactor	3 days	3/24/16
New Hydrogen Storage Tanks	1PM-4PM	New tanks placed on top of low pressure ones	3 hours	3/29/16

Current Station Snapshot

Component	Current Status	Comments
Dryer Skid	B and D	On 3/4, D calibrated & installed, Desiccant being heated and weighed
Stack Test Bed	Active	
LP Storage	Active (Minot 5-pack placed but not plumbed)	Consolidation 5-pack to arrive late March 2016
MP Compressor	Not Starting	New motor contactors ordered
MP Storage	Active	
HP Compressor HydroPac	Placed	Still need to: secondary containment, process connection, ESP, operation manual NOTE: Cannot be used for fills. Fill only into FIBA %
HP Compressor HI	Active	
HP Storage	Active	FIBA ¾ placed, but not plumbed
Chiller/HX	Active	
Dispenser	Active (Manual H70 vent line plugged)	NV needs to be replaced, already ordered. Breakaway replacement arrive 2/2/16
Hose Test Stand	Attended Cycling	