

Overview of an Integrated Research Facility for Advancing Hydrogen Infrastructure

Kevin Harrison (PI), Josh Martin, Mike Peters (Presenter), Owen Smith, Danny Terlip

> National Renewable Energy Laboratory DOE 2016 Annual Merit Review June 7, 2016

Project ID: TV038

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project start date: February, 2015 Project end date: TBD

Budget

Total Budget: \$1.1M

Barriers

- Technology Validation Barriers
- *D.* Lack of Hydrogen Refueling Infrastructure Performance and Availability Data
- E. Codes and Standards Validation projects will be closely coordinated with Safety, Codes and Standards
- Safety Codes and Standards Barriers
- F. Enabling national and international markets requires consistent RCS
- G. Insufficient technical data to revise standards
- J. Limited participation of business in the code development process

Partners

• Air Products and Chemicals, Inc.

Relevance & Project Objective

Design, build, commission, and operate a hydrogen station to understand industry challenges, provide hydrogen to DOE and industry funded research projects, fill hydrogen fuel cell vehicles, and provide a test platform for hydrogen infrastructure components.

- The Hydrogen Infrastructure Testing and Research Facility, HITRF, encompasses all elements of a commercial gaseous hydrogen fueling station with on-site forecourt production
- The integrated system leverages NREL's research in production, compression, storage, and dispensing into a unified system capable of fueling fuel cell electric vehicles and fuel cell forklifts
- By tracking hydrogen infrastructure performance, NREL will inform DOE, federal and state governments, academia, and industry of issues and solutions to commonly observed problems at hydrogen stations.

Approach: Operation and Data Collection

- Mimic current and future hydrogen stations by fueling FCEVs and simulated vehicles to report on hydrogen station performance.
- Collect and report on every facet of a hydrogen station:
 - System efficiency
 - Downtime
 - Maintenance cost/time
 - Capital cost
 - Lead times based on components
 - System integration
 - Safety
 - Controls

Approach: Layout

 Station pad is more spaced out than typical hydrogen stations to allow for infrastructure components, both research and commercial, to be moved in and out easily

Approach: Station Flow Diagram

Accomplishment: Commissioned Station

- Air Products and NREL commissioned the station in February, 2015
- Full auto OEM station acceptance did not happen until October, 2015
 - Added a high pressure hydrogen
 vessel after APCI commissioning
 - NREL did not have a test skid available to perform shakedown fills with the station

Accomplishment: Hydrogen Quality

Station passed SAE J2719: Hydrogen Fuel Quality for Fuel Cell Vehicles

SAE			H70	
J2719	SAE J2719 Limite	Smart Chemistry Detection Limits	© Headquarter sampled on 25/2 Concentration (µmol/m	
	(jumol/mol)	(jumol/mol)		
Water	5	1	<1	
Total Hydrocarbons (C, Basis)	2	1	0.13	
Methane		0.001	0.021	
Acetone		0.01		
Ethanol			0.011	
Isopropyl Alcohol			0.024	
Propane			0.018	
2-Methyl 2-Propanol			0.04	
Oxygen Hellum	5	2	< 2 10	
Nitrogen, Argon	100			
Nittogen		2	62	
Argon		0.5	< 0.5	
Carbon Dioxide	2	0.1	< 0.1	
Carbon Monoxide	0.2	0.0005	0.0013	
Total Sulfur	0.004	0.000001	0.0000070	
Hydrogen Sulfide		0.000002	0.000035	
Carbonyl Sulfide		0.000001	0.0000017	
Methyl Mercaptan (MTM)		0.00002	< 0.00002	
Ethyl Mercaptan (ETM) Dimethyl Sulfide (DMS)		0.00002	<pre>- 0.00002 - 0.00002 0.00000017</pre>	
Carbon Disulfide		0.000001		
Isopropyl Mercaptan (IPM)		0.00002	< 0.00002	
Tert-Butyl Mercaptan (TBM)		0.00002	< 0.00002	
n-Propyl Mercaptan n-Butyl Mercaptan		0.00002	< 0.00002	
Tetrahydrothiophene (THT)		0.00002	< 0.00002	
Formaldehyde	0.01	0.001	< 0.001	
Formic Acid Ammonia	0.2	0.005	< 0.005	
	0.05			
Total halogenates	0.05		0.010	
Chlorine		0.001	< 0.001	
Hydrogen Chloride		0.007	< 0.007	
		0.003	= 0.003	
Hydrogen Bromide Organic Halides (32 compounds in red		0.005	× 0.003	
and bold listed in "Other				
Hydrocarbona"). Smat Clemitty linit is for each Indidal organic helde		0.001	0.010	
Tetrachloro-hexafluorobutane			0.010	
			0.010	
Particulate Concentration	1mg/Kg		0.069 mg/kg	
Particulates Found & Size			Size # Found Size # Fo 0.03mm 1 0.09mm	
(ASTM D7634-10) - Images			0.1 mm 1 0.16mm	
of particulates found is in			All particulates are found in the ce	
Table 1			the filter.	

ydrogen fael index is the value obtained when the nt of aggregate important, as, expressed as perce

Accomplishment: Fuel Cell Vehicles

- NREL has 5 Fuel Cell Electric Vehicles onsite
 - Toyota Mirai
 - Hyundai Tucson
 - Mercedes Benz F-Cell
 - Toyota Highlander (2)
- NREL uses the vehicles for education, outreach, and VIP tours

Accomplishment: Supporting Research

The hydrogen station supports numerous high pressure research projects

- H2FIRST
 - Consolidation
 - HySTEP
 - Meter BenchmarkingHose Reliability
- Component Validation
- Renewable Electrolysis
- INTEGRATE

Accomplishment: Production

- Onsite H₂ production 50 kg/day
 - Upgrade planned 2016
 - Double production capacity
 - Adding (2) 1000A power supplies
 - Flexible platform for large active area stack testing
 - AC-DC power supplies capable of 4,000 Amp DC, 250 V DC
 - Stack and individual cell voltage measurements are taken to provide real time monitoring of stack and cell efficiency

Accomplishment: Compression

MaxPro – Low Pressure

HI – High Pressure

PPI – Medium Pressure

Hydropac – High Pressure

Parameter	MaxPro	PPI	HI	HYDRO PAC
Duty Cycle	As Needed	As Needed	As Needed	As Needed
Max Discharge Pressure (MPa)	20	40	138	96.5
Flow Rate (SCFM ¹)	3	18.8	5	140
Start of Operation	October 2014	December 2014	January 2015	Sept 2015

NATIONAL RENEWABLE ENERGY LABORATORY

Accomplishment: Storage

- Low Pressure Storage
 - 330 kilograms at 20 MPa
 - Provides house hydrogen to fuel cell labs
 - Feeds medium pressure compressor
- Medium Pressure Storage
 - 110 kilograms at 40 MPa
 - Used for 35 MPa forklift fills and 70 MPa vehicle cascade fills
 - Feeds high pressure compressors
- High Pressure Storage
 - 60 kilograms at 85 MPa
 - Provides hydrogen to high pressure projects
 - Used for 70 MPa vehicle fills

Accomplishment: Chilling and Dispensing

Accomplishment: Chilling and Dispensing

- Hydrogen dispenser, chiller, and heat exchanger provided by Air Products
- Dispenser is programmed to SAE J2601 2014 fueling protocol
- Currently working on MC Method upgrade
- Key parameters tracked
 - H70 Hose Pressure
 - H70 Hose Temperature
 - Cooling block temperature
 - Vehicle Pressure
 - Vehicle Temperature
 - Vehicle Volume

Responses to Reviewer Comments

This project was not reviewed last year.

Collaborations:

- Air Products
- Multiple other stakeholders have helped with the station commissioning and operation but some wish to remain anonymous, we have emails out to the stakeholders asking for permission to use their name in our poster

Challenges and Barriers

- Station downtime is an issue with hydrogen stations and NREL has seen these issues firsthand at their station
- NREL is actively working on how to engage research and industry more with their station.
- Findings from NREL's station need to be public knowledge and reported in places where people can easily find them
 - NREL is working with H2Tools to begin reporting station findings and issues that arise

Proposed Future Work

New projects already scheduled for the station

- Power to Gas (Collaboration with Southern California Gas)
- H₂ Liquefaction
- MC Method Testing

Plans for future projects

- Test new hydrogen fueling protocols
- Test new hydrogen chiller technologies

Summary

Relevance:

 Tracking hydrogen infrastructure performance NREL will inform DOE, federal and state governments, academia, and industry of issues and solutions to commonly observed problems at hydrogen stations.

Approach:

- Mimic current and future hydrogen stations by fueling FCEVs and simulated vehicles to report on hydrogen station performance
- Collect and report on every facet of a hydrogen station

Technical Accomplishments:

- Station Commissioning
- Passed Hydrogen Quality
- Fueling Hydrogen Fuel Cell Vehicles

Collaborations:

• Air Products

Proposed Future Research:

- Power to Gas (Collaboration with Southern California Gas)
- H₂ Liquefaction
- MC Method Testing

Technical Back-Up Slides

HITRF Layout

