Overview of an Integrated Research Facility for Advancing Hydrogen Infrastructure

Kevin Harrison (PI), Josh Martin, Mike Peters (Presenter), Owen Smith, Danny Terlip

National Renewable Energy Laboratory
DOE 2016 Annual Merit Review
June 7, 2016

Project ID: TV038

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
Project start date: February, 2015
Project end date: TBD

Budget
Total Budget: $1.1M

Barriers
• Technology Validation Barriers
• D. Lack of Hydrogen Refueling Infrastructure Performance and Availability Data
• E. Codes and Standards - Validation projects will be closely coordinated with Safety, Codes and Standards
• Safety Codes and Standards Barriers
• F. Enabling national and international markets requires consistent RCS
• G. Insufficient technical data to revise standards
• J. Limited participation of business in the code development process

Partners
• Air Products and Chemicals, Inc.
Relevance & Project Objective

Design, build, commission, and operate a hydrogen station to understand industry challenges, provide hydrogen to DOE and industry funded research projects, fill hydrogen fuel cell vehicles, and provide a test platform for hydrogen infrastructure components.

- The Hydrogen Infrastructure Testing and Research Facility, HITRF, encompasses all elements of a commercial gaseous hydrogen fueling station with on-site forecourt production
- The integrated system leverages NREL’s research in production, compression, storage, and dispensing into a unified system capable of fueling fuel cell electric vehicles and fuel cell forklifts
- By tracking hydrogen infrastructure performance, NREL will inform DOE, federal and state governments, academia, and industry of issues and solutions to commonly observed problems at hydrogen stations.
Approach: Operation and Data Collection

- Mimic current and future hydrogen stations by fueling FCEVs and simulated vehicles to report on hydrogen station performance.
- Collect and report on every facet of a hydrogen station:
 - System efficiency
 - Downtime
 - Maintenance cost/time
 - Capital cost
 - Lead times based on components
 - System integration
 - Safety
 - Controls
Approach: Layout

- Station pad is more spaced out than typical hydrogen stations to allow for infrastructure components, both research and commercial, to be moved in and out easily.
Approach: Station Flow Diagram

- Electrolyzer Stack Test Bed
 55 kg/day, 2 MPa

- Medium Pressure Compressor
 65 kg/day, 40 MPa

- Low Pressure Storage
 Single Tank
 10 kg, 20 MPa

- Low Pressure Storage
 5-pack x2
 220 kg, 20 MPa

- Medium Pressure Storage
 80 kg, 20 MPa

- High Pressure Compressor
 24 kg/day, 85 MPa

- High Pressure Compressor
 560 kg/day, 85 MPa

- High Pressure Storage
 60 kg, 85 MPa

- Hydrogen Dispenser
 H35

- Hydrogen Dispenser
 H70

- ESIF Low Pressure Projects

- ESIF High Pressure Projects
Accomplishment: Commissioned Station

- Air Products and NREL commissioned the station in February, 2015
- Full auto OEM station acceptance did not happen until October, 2015
 - Added a high pressure hydrogen vessel after APCI commissioning
 - NREL did not have a test skid available to perform shakedown fills with the station
Accomplishment: Hydrogen Quality

Station passed SAE J2719: Hydrogen Fuel Quality for Fuel Cell Vehicles

![Image of hydrogen quality station with labels: 15,000 psi Regulator, 2nd Valve, Inlet Ball Valve, 1st Valve, Sample Container Inlet Valve, H2 Vent, Outlet Ball Valve, Sample Container Outlet Valve.]

![Table from SAE J2719 showing hydrogen quality parameters and concentrations.]

NATIONAL RENEWABLE ENERGY LABORATORY
Accomplishment: Fuel Cell Vehicles

- NREL has 5 Fuel Cell Electric Vehicles onsite
 - Toyota Mirai
 - Hyundai Tucson
 - Mercedes Benz F-Cell
 - Toyota Highlander (2)
- NREL uses the vehicles for education, outreach, and VIP tours
Accomplishment: Supporting Research

The hydrogen station supports numerous high pressure research projects

- H2FIRST
 - Consolidation
 - HySTEP
 - Meter Benchmarking
 - Hose Reliability
- Component Validation
- Renewable Electrolysis
- INTEGRATE
Accomplishment: Production

• Onsite H$_2$ production – 50 kg/day
 – Upgrade planned 2016
 • Double production capacity
 • Adding (2) 1000A power supplies
• Flexible platform for large active area stack testing
• AC-DC power supplies capable of 4,000 Amp DC, 250 V DC
• Stack and individual cell voltage measurements are taken to provide real time monitoring of stack and cell efficiency
Accomplishment: Compression

MaxPro – Low Pressure

HI – High Pressure

PPI – Medium Pressure

Hydropac – High Pressure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MaxPro</th>
<th>PPI</th>
<th>HI</th>
<th>HYDRO PAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty Cycle</td>
<td>As Needed</td>
<td>As Needed</td>
<td>As Needed</td>
<td>As Needed</td>
</tr>
<tr>
<td>Max Discharge Pressure (MPa)</td>
<td>20</td>
<td>40</td>
<td>138</td>
<td>96.5</td>
</tr>
<tr>
<td>Flow Rate (SCFM¹)</td>
<td>3</td>
<td>18.8</td>
<td>5</td>
<td>140</td>
</tr>
</tbody>
</table>
Accomplishment: Storage

- Low Pressure Storage
 - 330 kilograms at 20 MPa
 - Provides house hydrogen to fuel cell labs
 - Feeds medium pressure compressor

- Medium Pressure Storage
 - 110 kilograms at 40 MPa
 - Used for 35 MPa forklift fills and 70 MPa vehicle cascade fills
 - Feeds high pressure compressors

- High Pressure Storage
 - 60 kilograms at 85 MPa
 - Provides hydrogen to high pressure projects
 - Used for 70 MPa vehicle fills
Accomplishment: Chilling and Dispensing

- H35/H70 Dispenser
- Heat Exchanger
- Chiller
Accomplishment: Chilling and Dispensing

- Hydrogen dispenser, chiller, and heat exchanger provided by Air Products
- Dispenser is programmed to SAE J2601 2014 fueling protocol
- Currently working on MC Method upgrade
- Key parameters tracked
 - H70 Hose Pressure
 - H70 Hose Temperature
 - Cooling block temperature
 - Vehicle Pressure
 - Vehicle Temperature
 - Vehicle Volume
Responses to Reviewer Comments

This project was not reviewed last year.
Collaborations:

- Air Products
- Multiple other stakeholders have helped with the station commissioning and operation but some wish to remain anonymous, we have emails out to the stakeholders asking for permission to use their name in our poster
Challenges and Barriers

• Station downtime is an issue with hydrogen stations and NREL has seen these issues firsthand at their station.
• NREL is actively working on how to engage research and industry more with their station.
• Findings from NREL’s station need to be public knowledge and reported in places where people can easily find them.
 o NREL is working with H2Tools to begin reporting station findings and issues that arise.
Proposed Future Work

New projects already scheduled for the station

• Power to Gas (Collaboration with Southern California Gas)
• H$_2$ Liquefaction
• MC Method Testing

Plans for future projects

• Test new hydrogen fueling protocols
• Test new hydrogen chiller technologies
Summary

Relevance:
• Tracking hydrogen infrastructure performance NREL will inform DOE, federal and state governments, academia, and industry of issues and solutions to commonly observed problems at hydrogen stations.

Approach:
• Mimic current and future hydrogen stations by fueling FCEVs and simulated vehicles to report on hydrogen station performance
• Collect and report on every facet of a hydrogen station

Technical Accomplishments:
• Station Commissioning
• Passed Hydrogen Quality
• Fueling Hydrogen Fuel Cell Vehicles

Collaborations:
• Air Products

Proposed Future Research:
• Power to Gas (Collaboration with Southern California Gas)
• H_2 Liquefaction
• MC Method Testing
HITRF Layout