

# Innovative Non-PGM Catalysts for High-Temperature PEMFCs

# 2017 DOE Hydrogen and Fuel Cell Program Review PI: Sanjeev Mukerjee

Department of Chemistry and Chemical Biology,

Northeastern University, 360 Huntington Av., Boston, MA 02115

# June 7<sup>th</sup>, 2017

Project ID# FC132

This presentation does not contain any proprietary, confidential, or otherwise restricted information.



Northeastern University Innovative Non-PGM Catalysts for High-Temperature PEMFCs

Center for Renewable Energy Technology

## **Overview Project [DE-EE0006965]**

- Timeline:
  - Start date: 7/01/2015
  - End date: 12/31/2017
- Budget Data: Total Project Value: \$ 1,029,493 (Federal), \$ 257,373 (cost share); Total \$ 1,286,866
- ➢ Cost Share Percentage: 20%
- > Barriers/Targets (Addresses both 'Cost' and 'Durability')
  - Key Barriers: Current state of the art PAFC imbibed systems use 3-5 mg/cm<sup>2</sup> amounting to \$ 750-1000/KW in noble metal cost. Other issues relate to elevated mass transport losses due to six fold lower O<sub>2</sub> permeability and proton conduction.
  - Activity Targets: for PGM-free catalysts (**BP-1**): Areal Activity (Air): 200 mA/cm<sup>2</sup> at 0.6 V, 2.5 bar total pressure with PGM content (anode) lower than 1.5 mg/cm<sup>2</sup> (go/no go point).
  - **Durability Target**: at temperatures ≤ 180°C, PGM-free catalysts subjected to OCV test for 3 hrs with less than 3% loss at 0.65 V. Chronoamperometric test at 0.8 V for 48 hrs with less than 3% loss at 0.65 V.

#### > Partners

- Northeastern Univ., (Prime) Boston, MA: S. Mukerjee (P.I)
- <u>Univ. of New Mexico</u> (Sub-awardee), Albuquerque, NM: Prof. P. Atanassov
- <u>Pajarito Powder (Sub-awardee)</u>, Albuquerque, NM: Dr. B. Zulevi
- <u>Advent North America</u> (special materials supplier/vendor), Boston, MA: Dr. Emory De Castro

## Relevance

#### > Objectives:

To investigate the use and development of PGMfree electrocatalysts that would allow for high performance in high-temperature proton exchange membrane fuel cells.

#### Relevance to DOE Mission:

- This will enable decoupling HT-PEM technology from Pt resource availability and lower MEA costs by at least 50%.
  - Significant benefits to energy efficiency, carbon footprint, and United States energy security

#### > Impact:

- Reduction of unit cost from \$30-50k to <\$10k for micro combined heat and power devices (micro-CHP).
- Independence from Pt and other precious metal global availability
- Greater tolerance to poisons which typically effect Pt & Pt alloys (i.e., sulfur, CO, phosphate, etc.), Hence ability to tolerate H<sub>2</sub> with greater impurity.



# **Overall Approach**

- <u>Overall technical approach</u>:
  - > New Catalyst development and scale up strategies:
    - Iron-Nitrogen-Carbon based active sites embedded in a MOF structure
      - Scale up through unique reactive ball milling approach
        - » Simultaneous ball milling of all precursors (Fe salt, chelating agent, Zn nitrate, imidazole
    - Improvement of mass transport and corrosion resistant characteristics
      - Through use of sacrificial support method (SSM)
      - Through the use of alternative support materials including  $TaC_x$  and  $WC_x$
  - Enhanced understanding of mass transport through modeling and mass transport experiments (Helox)
    - Low concentration oxygen gases used for evaluating mass transport parameters
  - Single cell fabrication and testing
    - For elucidating performance as well as durability/corrosion resistance information
- Program Technical Barriers and Approach to Overcome them:
  - Meeting and Exceeding Program targets of 100mA/cm<sup>2</sup> @ 0.7V (H<sub>2</sub>/O<sub>2</sub>, 1.5bar total pressure) & 200mA/cm<sup>2</sup> @ 0.6V (H<sub>2</sub>/air, 2.5bar total pressure).
    - (a) New classes of materials due to current high precious metal loadings (2-4mg/cm2), which cause precious metal costs of \$750-1000/KW (with 200mW/cm2 @ 0.7V, H2/air, 2.5bar total pressure)
    - (b) Redesign of the catalyst support and Electrode Structure for efficient mass transport.
      - High mass transport losses due to lower  $O_2$  (5x) and proton (6x) permeability
    - (b) Developing materials to avoid phosphate poisoning effects present with precious metals <sup>3</sup>



| Milestone Summary Table |                                                                   |                                                                            |                             |                                                                                                                                                |                                                                                                                                                                 |                        |         |  |
|-------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|--|
| Recipient Name          |                                                                   | Northeastern University (NEU), Sanjeev Mukerjee (P.I)                      |                             |                                                                                                                                                |                                                                                                                                                                 |                        |         |  |
| Project Title           |                                                                   | Innovative Non PGM Catalysts for CHP Relevant Proton Conducting Fuel Cells |                             |                                                                                                                                                |                                                                                                                                                                 |                        |         |  |
| Task<br>Number          | Task or<br>Subtask<br>Title                                       | Milestone<br>Type                                                          | Milestone<br>or Go/No<br>Go | Milestone Description<br>(Go/No-go Decision<br>Criteria)                                                                                       | Milestone Verification<br>Process                                                                                                                               | Anticipated<br>Quarter |         |  |
|                         |                                                                   |                                                                            | Decision<br>Point           |                                                                                                                                                |                                                                                                                                                                 | Date                   | Quarter |  |
| 1.1                     | Catalyst<br>Preparation<br>and scale up<br>with MOF<br>chemistry. | Milestone                                                                  | M1.1a                       | Develop scale up chemistry<br>based on reactive ball milling<br>for achieving 5 gm batch of<br>MOF-based non-PGM<br>cathode catalyst material. | Less than 5% inter and intra<br>batch variation in in RDE<br>performance using 0.1 M<br>HClO <sub>4</sub> with up to 100 mM<br>H <sub>3</sub> PO <sub>4</sub> . | 3 mo                   | Q 1     |  |
| 1.1                     | Catalyst<br>Preparation<br>and scale up<br>with MOF<br>chemistry. | Milestone                                                                  | M1.1b                       | Demonstrate initial MEA<br>activity of non-PGM cathode<br>catalyst with PA-imbibed<br>membrane.                                                | Polarization measurements<br>demonstrating 100 mA/cm <sup>2</sup><br>at 0.7 V using H <sub>2</sub> /O <sub>2</sub> at<br>180°C 1.5 bar total pressure.          | 6 mo                   | Q 2     |  |
| 2.1                     | Improving<br>Mass<br>Transport<br>Characteristi<br>cs.            | Milestone                                                                  | M2.1                        | MEA testing of SSM-<br>templated non-PGM catalyst.                                                                                             | MEA performance of 200<br>mA/cm <sup>2</sup> at 0.65 V, H <sub>2</sub> /Air,<br>180°C, 2.5 bar total pressure.                                                  | 9 mo                   | Q 3     |  |
| 1.2                     | Scale up of<br>catalysts<br>based on<br>MOF<br>approach.          | Milestone                                                                  | M1.2                        | Scale up of MOF-based non-<br>PGM catalyst to 30-50 gm<br>batch size.                                                                          | Less than 5% inter and intra<br>batch variation in RDE and<br>MEA performance (H <sub>2</sub> /Air)                                                             | 12<br>mo               | Q4      |  |



| Go/No-<br>Go<br>Decision |                              | Go/No-Go<br>Decision | GNG 1 | Fuel cell measurements and validation.                                                                                                               | At least 200 mA/cm <sup>2</sup> at 0.60 V with 2.5 bar total pressure, $H_2/air$ , 180°C. Total PGM catalyst loading on the PA-imbibed membrane-based MEA to be lower than 1.5 mg/cm <sup>2</sup> Pt exclusive to the anode electrode with a non-PGM cathode. | 12<br>mo | End of<br>Q4 |
|--------------------------|------------------------------|----------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 1.4                      | Durability<br>studies        | Milestone            | M1.4a | Durability testing on scaled<br>up samples based on reactive<br>ball milling (30-50 gm batch).                                                       | MEA performance of 200 mA/cm <sup>2</sup> at 0.6 V, H <sub>2</sub> /air, 180°C, 2.5 bar total pressure. Chronoamperometric testing at 0.8 V (H <sub>2</sub> /air) 2.5 bar total pressure (180°C) with 5 % activity loss over 48 hrs.                          | 18<br>mo | Q5           |
| 2.3                      | Durability<br>studies        | Milestone            | M2.3a | Corrosion testing of SSM<br>based materials from sub-task<br>2,3                                                                                     | Open circuit test on SSM<br>based materials at $180^{\circ}$ C,<br>H <sub>2</sub> /air conditions for 3 hrs<br>with activity loss of less than<br>3% at 0.65 V (2.5 bar total<br>pressure).                                                                   | 21<br>mo | Q6           |
| 3.3                      | Final down<br>select         | Milestone            | M3.3a | Down select of scaled up<br>integrated material containing<br>FE-MOF based active site,<br>SSM based microporous layer<br>on GDL structures          | Achieving H <sub>2</sub> /Air<br>performance target of 200<br>mA/cm <sup>2</sup> at 0.65 V, 180°C,<br>2.5 bar absolute pressure.                                                                                                                              | 24<br>mo | Q7           |
| 3.2                      | Fuel cell test<br>validation | Milestone            | M3.2b | Fuel cell test validation at<br>OEM partner facility with<br>100 cm <sup>2</sup> MEA using PA-<br>imbibed membrane and non-<br>PGM cathode catalyst. | Achieving H <sub>2</sub> /Air<br>performance target of 200<br>mA/cm <sup>2</sup> at 0.65 V, 180°C,<br>2.5 bar total pressure                                                                                                                                  | 24<br>mo | Q8           |

 $\triangleright$ 

 $\triangleright$ 

 $\triangleright$ 

 $\triangleright$ 

### Running Hot and Dry: Poor Proton Conductivity and Oxygen Permeability in PA Systems



Linares J J et al. J. Electrochem. Soc. 2012;159:F194-F202

|        | Conductivity (S/cm) | $\lambda$ (H <sub>2</sub> O/SO <sub>3</sub> ) | D (10 <sup>6</sup> ) (cm <sup>2</sup> /S) | C (10 <sup>6</sup> ) (mol/cm <sup>3</sup> ) | DC    |
|--------|---------------------|-----------------------------------------------|-------------------------------------------|---------------------------------------------|-------|
| Nafion | 0.12                | 12.5                                          | 5.51                                      | 9.42                                        | 55.88 |

Balance of Plant CO Tolerance: < 2% above 160°C S Tolerance: 100 ppm No need for Prox unit

### **Power Density**

~ 400 mW/cm<sup>2</sup> at 0.65 V, H<sub>2</sub>/Air Nafion: 1.1 W/cm<sup>2</sup>



### Phosphate Anion Poisoning & Platinum Requirements



#### **Global Platinum Production in 2012**



## Average Global Platinum Cost Trend Volatility is key issue





Materials Design Strategy: Evolution of Different Approaches in Budget Period 1... Continued

Mechano-Chemical Approach (UNM)



[1] M=Fe, Co; X=C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, CI
[2] '@' indicates chemical encapsulation of phenanthroline and metal (M-N<sub>4</sub> active site)





#### Fe-CTS Modification for Air and Scale Up Pore structure evolution

Pore size tailored for air ~10nm pores Pyrolized Etched Silica Pyrolized Porous ~100nm non-PGM Infused with infused pore pore pores structure structure catalyst silica precursors

UNM SSM method Fe-CTS catalyst porosity modified for air operations and scaled to 200gram per batch

## Fe-MOF tech Transfer and Scale Up



- Key process steps and variables established and being adjusted for x20 scale
- Promising performance of initial x10 batches established

Northeastern University

### In Situ XAS Studies at the Fe K edge







### Q1 - RDE Phosphate Poisoning & Inter-Intra Batch Variability



#### Q2/Q3/Q4 - Measurements in a Phosphoric Acid Fuel Cell Interface – MOF Approach



# Fe-N-C ORR Catalyst in PBI MEA

**MEA Polarization – Back Pressure Effects @ 180 C** 







SOUTH CAROLINA

## eta-site testing: Brian Benicewicz





NPC-2010 testing done at 200°C for both performance at durability.

 Elevated temperature should be more taxing during durability, so performance was done at same temperature for consistency.











Current Density (A/cm<sup>2</sup>)





- Q1: RRDE demonstrating Non-PGM with phosphate immunity
  - <u>Status:</u> Target ACHIEVED, as both MOF-SR and MOF-SSR demonstrate high immunity towards phosphate poisoning
- Q2: Fuel cell performance demonstrating 100mA/cm<sup>2</sup> (iR-free) at 700mV in H<sub>2</sub>/O<sub>2</sub>, 1.5bar total pressure (7psig)
  - <u>Status:</u> Target ACHIEVED with MOF-SR and MOF-SSR tested at NEU as well as UNM catalyst tested at USC
- Q3 & Go/No-Go: Fuel cell performance demonstrating 200mA/cm<sup>2</sup> at 600mV in H<sub>2</sub>/air, 2.5bar total pressure (21psig)
  - <u>Status:</u> Target ACHIEVED with UNM catalyst tested at USC. At elevated temperature (200°C), target ACHIEVED with Pajarito NPC-2010 tested at NEU. MOF-SR and MOF-SSR tested at NEU are 20 & 50mV shy of target, respectively. Other UNM & Pajarito materials testing in progress at NEU.
- Q5 (April 1 June 30, 2017): Chronopotentiometric testing at 800mV (H<sub>2</sub>/air, 2.5bar), less than 5% losses through 24-48 hours at 650mV
  - <u>Status:</u> Target ACHIEVED with Pajarito NPC-2010, while maintaining Go/No-Go performance metric, even at elevated temperature. Testing in progress with other Non-PGMs at NEU.
- Q6 (April 1 June 30, 2017): Corrosion Resistance demonstrating less than 3% losses at 650mV (3hr hold at OCP, H<sub>2</sub>/air, 2.5bar)
  - <u>Status:</u> Target ACHIEVED with Pajarito NPC-2010, while maintaining Go/No-Go performance metric. Testing in progress with other Non-PGMs at NEU.



# **Ongoing and Future Efforts**

## • Continued Development of Non-PGMs at UNM & Pajarito

- In order to achieve Q7 target (catalyst down-select)
  - 200mA/cm<sup>2</sup> at 650mV (H<sub>2</sub>/air, 2.5bar)
- Continued Durability testing at NEU
  - Chronopotentiometric testing (24-48hrs) at NEU (Q5)
    - Pajarito NPC-2010 demonstrated durability over 48hrs while exceeding Go/No-Go performance metric. Anticipate similar durability from other Non-PGM materials.
  - Corrosion Resistance testing at NEU (Q6)
    - Pajarito NPC-2010 demonstrated no performance losses while exceeding Go/No-Go performance metric. Anticipate similar durability from other Non-PGM materials.
  - Temperature cycling durability from 90-200C (50 cycles)
- MEA Scale up (Q8)
  - New commercial test stations will allow for NEU to do both longer term testing as well as larger MEAs
    - Through partnership with Advent, NEU is currently capable of fabricating and testing 45cm<sup>2</sup>
      - Based on performance of 45cm<sup>2</sup> vs 5cm<sup>2</sup>, NEU will look at possibility of expanding to 100cm<sup>2</sup>.
        - » Would require both new fabrication tools as well as cell hardware for that expansion.

Any proposed future work is subject to change based on funding levels



### Benefits of High-temperature PEMFC with PGM-free catalyst

- Opportunity fuels: lower cost reformates and waste hydrogen streams in industrial market (10,000 – 30,000 ppm CO tolerance)
- −  $H_2$  clean-up equipment reduction by 80-90% → simpler, more robust system, lower cost
- Smaller radiator
- Additional revenue from by-product heat/steam

## PGM-free Catalyst Manufacturing

- Pajarito Powder has scaled up non-PGM catalyst fabrication, test marketing in progress
- Target markets
  - Stationary power (including CHP)
  - Backup power
  - Material handling

### Linking FC Technology to Natural Gas Economy

- Flare gas associated with oil and coal production (>10,000 MW potential)
- Barrier to widespread deployment: CAPEX (~\$20k) too high; need <\$10k</li>

## **Lessons Learned**

- Early examples of micro-CHP units - high CapEx and OpEx:
  - UTC TARGET program (1970+): 4 kW PAFC (CO-tolerant)
    - Consortium of 32 gas or mixed gaselectricity companies
  - PlugPower/GE, ClearEdge (2000+): 5 kW PEM systems
    - Deployed >1000 systems, natural gas fuel
- Japan: ene-farm has deployed >200,000 units
- Europe: ene.field has a goal of 1,000 CHP units in 11 countries





**Use of PGM-free Cathode Catalyst** 



Reduced price fluctuations associated with Pt

- Potential for 50% cost reduction via PGM-free supply chain
- Use of lower cost hydrogen streams as fuel
- Use of Flare gas new market opportunity
- CHP benefits

# **Collaborations**



## **Partners (this project)**

- Northeastern Univ., (Prime) Boston, MA: S. Mukerjee (P.I)
- The Univ. of New Mexico, Albuquerque, NM: P. Atanassov (Univ., sub-contractor)
- Pajarito Powder, LLC, Albuquerque, NM: B. Zulevi (Industry, sub-contractor)
- Advent Technologies, Inc., Cambridge, MA: E. De Castro (Industry, special materials supplier)
- eT2M, Danbury, CT: L. Lipp (Industry, T2M research vendor)

## Other collaborators:

Jean-Pol Dodelet, Pajarito Powder LLV (Scientific Board Member)

Frederic Jaouen, University of Montpelier (France)

Brian Benicewicz, University of South Carolina



- XAS data used for building active site models are based on assumptions inherent in the FEFF code. Careful control experiments have been used to validate the reported results.
- All iR corrections performed on fuel cell data was conducted using high frequency resistance measurements at 1 kHz.