FC136 – FC-PAD: Components and Characterization

Presenter: Karren L. More

Tuesday, June 6th 2017

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
FC-PAD: Consortium to Advance Fuel Cell Performance and Durability

Approach

Couple national lab capabilities with funding opportunity announcements (FOAs) for an influx of innovative ideas and research

Objectives

- Improve component stability and durability
- Improve cell performance with optimized transport
- Develop new diagnostics, characterization tools, and models

Consortium fosters sustained capabilities and collaborations

Structured across six component and cross-cutting thrusts

Core Consortium Team

Prime partners added in 2016 by DOE solicitation (DE-FOA-0001412)

www.fcpad.org
FC-PAD Consortium - Overview

Fuel Cell Technologies Office (FCTO)

- FC-PAD coordinates activities related to fuel cell performance and durability
 - The FC-PAD team consists of five national labs and leverages a multi-disciplinary team and capabilities to accelerate improvements in PEMFC performance and durability
 - The core-lab team consortium was awarded beginning in FY2016; builds upon previous national lab (NL) projects
- Provide technical expertise and harmonize activities with industrial developers
- FC-PAD serves as a resource that amplifies FCTO’s impact by leveraging the core capabilities of constituent members
Overall Objectives:

- Advance *performance* and *durability* of polymer electrolyte membrane fuel cells (PEMFCs) at a *pre-competitive* level
- Develop the knowledge base and optimize structures for more durable and high-performance PEMFC components
- Improve high current density performance at low Pt loadings
 - Loading: 0.125 mg_{Pt} / cm² total
 - Performance @ 0.8 V: 300 mA / cm²
 - Performance @ rated power: 1,000 mW / cm²
- Improve component durability (e.g., membrane stabilization, self-healing, electrode-layer optimization)
- Provide support to industrial and academic developers from FOA-1412
- Each thrust area has a sub-set of objectives, which support the overall performance and durability objectives
FC-PAD Overview and Relevance

Timeline

| Project start date: 10/01/2015 |
| Project end date: 09/30/2020 |

Budget

- **FY17 project funding:** $5,150,000
- **As proposed:** 5-year consortium with quarterly, yearly milestones & Go/No-Go
- **Total Expected Funding:** $25M (NLs only)

Partners/Collaborations

(To Date Collaborations Only)

- IRD Fuel Cells, Umicore, NECC, GM, TKK, USC, 3M, JMFC, W.L. Gore, Ion Power, Tufts, KIER, PSI, UDelaware, CSM, SGL, NPL, NIST, CEA,ULorraine
- Partners added by DOE DE-FOA-0001412

Barriers

- **Cost:** $40/kW system; $14/kW_{net} MEA
- **Performance @ 0.8 V:** 300 mA / cm²
- **Performance @ rated power:** 1,000 mW / cm² (150 kPa abs)
- **Durability with cycling:** 5,000 (2020) – 8,000 (ultimate) hours, plus 5,000 SU/SD Cycles

- **Mitigation** of Transport Losses
- **Durability** targets have not been met

- The **catalyst layer** is not fully understood and is key in lowering costs by meeting rated power
- Rated power@ low Pt loadings reveals unexpected losses
FC-PAD Objectives: How We Get There

• Develop the knowledge base and optimize structures for more durable and high-performance PEMFC components

• Understanding Electrode Layer Structure
 o Characterization

• New Electrode Layer Design and Fabrication
 o Stratified (Spray, Embossed, Array), Pt - Deposition, Jet Dispersion

• Defining/Measuring Degradation Mechanisms
 o Membrane, Catalyst Pt-alloy dissolution

FC-PAD Presentations

• FC135: FC-PAD: Fuel Cell Performance and Durability Consortium (Rod Borup, LANL)
 – Overview, Framing, Approach, and Highlights/Durability

• FC136: FC-PAD: Components and Characterization (Karren L. More, ORNL)
 – Concentration on Catalysts and Characterization

• FC137: FC-PAD: Electrode Layers and Optimization (Adam Weber, LBNL)
 – Concentration on Performance - MEA construction and modeling

• FC155 (3M), FC156 (GM), FC157 (UTRC), FC158 (Vanderbilt) FOA-1412 Projects
FC-PAD: Component Characterization - Capabilities

THICKNESS / SWELLING ANALYSIS

- **QCM (Quartz Crystal Microbalance)**: Change in frequency of the crystal depends on mass change in the film.
- **Ellipsometry**: Thickness measurement.

STRUCTURAL ANALYSIS

- **XRD (X-ray Diffraction)**: Reflexions or diffractions of X-rays by materials.

MECHANICAL ANALYSIS

- **AST (Adhesion Silencing Test)**: Methodology for predicting stress-thickness.

Thin film characterization

AST Development/Refinement

- **Time-resolved on-line ICP-MS**
- **Synchrotron X-ray techniques**

Advanced microscopy & spectroscopy
Technical Progress: AST Development & Refinement

New catalyst durability AST is 5X faster than *old* AST and 20X faster than *FCTT* durability protocol

- Square wave lowers test duration from 133 to 50 hours (does not include characterization time)
- Square wave still representative of drive cycle degradation
- AST reflective of Pt dissolution and independent of carbon type

Other durability protocols under development and refinement:

- Membrane durability
- Carbon durability
- SU/SD protocols
- Freeze protocols
- Drive cycle protocols
Technical Progress: Aqueous Stability of PtCo Alloys

Time-Resolved On-Line ICP-MS Measurements

Objectives:
- Real time measurements of Pt and Co dissolution under cyclic potentials
- Resolve anodic vs. cathodic dissolution of Pt and Co

Catalysts:
- TEC36E52, Pt₃Co/HSC, 46.5 wt% Pt, 4.7 wt% Co, 5.7 nm TEM
- Umicore Elyst P30 0670, 27.5 wt% Pt, 3 wt% Co, 4.4 nm TEM
- Catalyst-ionomer ink deposited on GC at 2 µg-Pt/cm²

ICP-MS: Agilent 7500ce Octopole; Cell: BASi

- Co dissolution observed at all potentials
- Distinct peaks in anodic and cathodic dissolution of Pt above 0.9 V
- Potential dependent dissolution rates of Pt and Co

![Graph showing Pt and Co dissolution over time and potential](image)
Technical Progress: Dissolution of Pt from Umicore Pt₇Co₃/C Cathode Catalyst on Stair-Case Potentials

Cathodic dissolution not significant for UPL < 0.9 V in square wave potentials

- Distinct anodic and cathodic peaks
- Anodic peaks higher at higher potentials
- Highest cathodic peak on potential step from 0.8 to 0.75 V

- ~3-time higher Pt dissolution during cathodic than anodic steps, stair-case potential, 1 V UPL
- Both anodic and cathodic Pt dissolution rates (amount dissolved divided by cycle time) increase at higher potential steps

Peak cathodic dissolution rate depends on the initial potential and the potential step

Peak cathodic rate reaches a maximum at 0.65-0.75 V step down potential
Technical Progress: Dissolution of Co from Umicore Pt₇Co₃/C Cathode Catalyst on Stair-Case Potentials

Break-in protocol requires >1-h conditioning on 0.4-1.0 V square wave potentials

- Comparable Co dissolution during anodic and cathodic steps
- Anodic and cathodic Co dissolution rates (amount dissolved divided by cycle time) lowest for 200 mV potential step

Peak cathodic dissolution rate depends on the initial potential and the potential step

- Anodic Co dissolution rate nearly constant for potentials up to 0.8 V
- Anodic peaks observed at potentials >0.8 V
- Highest cathodic peak on potential step from 0.8 to 0.6 V
Technical Progress: Extensive Study of PtCo Catalysts

<table>
<thead>
<tr>
<th>Catalyst Supplier</th>
<th>Catalyst/HSAC</th>
<th>Catalyst Loading ((mg_{Pt}/cm^2)) & ECSA ((m^2_{Pt}/g_{Pt}))</th>
<th>Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umicore</td>
<td>PtCo (Elyst Pt30 0670) spray-coated CCL @ NREL</td>
<td>0.1 & 37</td>
<td>Nafion 211</td>
</tr>
<tr>
<td>IRD (EWII)</td>
<td>Pt(_3)Co (IRD SOA catalyst) IRD-prepared MEA</td>
<td>0.2 & 41</td>
<td>Reinforced</td>
</tr>
<tr>
<td>GM - SOA</td>
<td>GM SOA PtCo catalyst GM-prepared MEA</td>
<td>0.1 & 43</td>
<td>DuPont XL-100</td>
</tr>
</tbody>
</table>

MEAs characterized:
- **Conditioned / BOL**
- **NEW Catalyst AST**
- **OLD Catalyst AST**
- **1200 hr Wet Drive Cycle**

![Old triangle-wave catalyst AST](chart1.png)

![New square-wave catalyst AST](chart2.png)

0.6 -1.0V cycles
30,000 cycles
Target – 133 hrs

0.6 -0.95V cycles
30,000 cycles
Target – 50 hrs

www.fcpad.org
Technical Progress: Extensive Study of PtCo Catalysts

SOA Pt-Co/HSAC

Fresh MEA:

- Avg. PtCo particle size
 - 4.4nm diameter

- Avg. PtCo composition
 - 85% Pt – 15% Co

- Majority of PtCo particles are inside HSAC support:
 - 77% within core
 - 23 % on surface

STEM-BF image

segmented Pt/C 3D surfaces

rotation animation

volume clipping animation

www.fcpad.org
Technical Progress: Extensive Study of PtCo Catalysts

- Significant increase in PtCo particle size from 4.5nm to ~7.4nm during 1200 hr wet drive cycle
- Significant drop in Co content within CCL - average particle composition changes from 85Pt:15Co to ~95Pt:5Co
- Significant Pt-enrichment of most particles (except for very large particles)
Technical Progress: Extensive Study of PtCo Catalysts

SOA Pt-Co/HSAC
Wet Drive cycle 1200 hrs:

- Avg. PtCo particle size
 - 7.5nm diameter

- Avg. PtCo composition
 - 95% Pt – 5% Co

- Some change of PtCo particles from *inside* to *surface* of HSAC support:
 - 65% remain in core
 - 35% on surface

Increased PtCo particles on surface of HSAC after testing due to Pt and Co dissolution
Pt and Co mol fractions in particles and d-spacing calculated from fit to position of WAXS (111) peak – *PtCo catalysts become more “Pt-like” during ASTs*
Technical Progress: Co Loss During ASTs

SOA PtCo exhibits improved initial performance (ECSA) compared to other PtCo/HSAC catalysts, but after 30,000 cycles, ECSA values are the same.

Performance (ECSA) loss can be directly attributed to extensive Co loss from catalyst/CCL into membrane during AST.
Technical Progress: Quantifying Co Loss to Membrane

Method:

- Au-coat MEAs for internal standard (should not use Cu, Pt, C)
- Acquire EDS maps of cathode catalyst layer (CCL) and membrane
- Assume most Pt lost redeposits in “Pt-band” in membrane near the CCL, calculate Pt migration from cathode into membrane using Au reference/standard
- Use average Pt:Co ratio in untested CCL and amount of Co in tested CCL to calculate ~Co in membrane

\[
\frac{Pt_{mem}/Au_{mem}}{Pt_{cat}/Au_{cat} + Pt_{mem}/Au_{mem}} = Pt_{loss}
\]

Technical Progress: Quantifying Co Loss to Membrane

Umicore

GM XL square

CCL

membrane near cathode

membrane near anode

www.fcpad.org
Technical Progress: Quantifying Co Loss

Co migration from cathode to membrane:

<table>
<thead>
<tr>
<th></th>
<th>Nominal Loading -BOL conditioned- (mg/cm²)</th>
<th>AST STEM/EDS quantification</th>
<th>Loss to membrane (mg/cm²)</th>
<th>Remaining cathode content (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM XL</td>
<td>0.1</td>
<td>32% Pt loss</td>
<td>0.032</td>
<td>0.068 Pt</td>
</tr>
<tr>
<td>(square wave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>50% Co loss</td>
<td>0.009</td>
<td>0.009 Co</td>
</tr>
<tr>
<td>Umicore</td>
<td>0.1</td>
<td>28% Pt loss</td>
<td>0.028</td>
<td>0.072 Pt</td>
</tr>
<tr>
<td>(triangle wave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>52% Co loss</td>
<td>0.013</td>
<td>0.012 Co</td>
</tr>
</tbody>
</table>

Next step - how much Co remains within the ionomer in CCL?
Technical Progress: RDE Testing - Film Deposition, Impurities

- RDE technique used by basic/applied science community for PEMFC electrocatalyst screening
- Standard test protocol and best practices can enable procedural consistency and less variability
- Test protocol and best practices validated at NREL and ANL using poly-Pt, Pt/C-TKK, JM, Umicore

3 film deposition/drying methods evaluated @ NREL

- SAD (stationary air-dry)
- RAD (rotational air-dry)
- SIPAD (stationary IPA dry)

Nafion-based Rotational Air Drying (N-RAD) most reliable method for routine screening

Cell and Electrolyte Impurity Levels—poly-Pt specific activity as a diagnostic

![Statistical reproducibility of Poly-Pt specific activity](image)

RDE cell configurations used at NREL and ANL

Technical Progress: TF-RDE Protocols and Baselines

RDE Protocols

Statistical Reproducibility Pt/C Specific Activity (\(\mu\text{A/cm}^2\text{Pt}\)) at NREL (Rotational Air Dry or N-RAD technique)

- **485 ± 10% (n = 49)**
- **515 ± 5% (n = 29)**
- **344 ± 8% (n = 24)**

- **TKK**
 - 46.4 wt% Pt; d~2.5nm

- **JM**
 - 37.6 wt% Pt; d<2nm

- **Umicore**
 - 47.2 wt.% Pt; d~4.9nm

- **Pt/C mass activity (mA/mgPt)**
- **Inter-lab comparison (N-RAD technique)**

- **ORR Protocol Details**

<table>
<thead>
<tr>
<th>Gas</th>
<th>N(_2) or O(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>r.t. 1600</td>
</tr>
<tr>
<td>Rotation Rate [rpm]</td>
<td>0.02</td>
</tr>
<tr>
<td>Potential Range [V vs. RHE]</td>
<td>-0.01 to 1.0 (anodic)</td>
</tr>
<tr>
<td>Scan Rate [V/s]</td>
<td>0.02</td>
</tr>
<tr>
<td>(R_{\text{sol}}) measurement method</td>
<td>i-interrupter or EIS (HFR)</td>
</tr>
<tr>
<td>iR compensation</td>
<td>applied during measurement</td>
</tr>
<tr>
<td>Background Subtraction</td>
<td>LSV (O(_2))−LSV (N(_2))</td>
</tr>
</tbody>
</table>

- **Test protocol and best practices validated at NREL and ANL**
Technical Progress: Ionomer-TM Effect on ORR Kinetics RDE

ORR Kinetics on bare and PFSA thin film-coated Poly-Pt with 10 mM Ni^{2+} in electrolyte

Studies on Co^{2+} underway
Proposed Future Work

- **Catalysts and Catalyst Layers**
 - Characterize new catalysts incorporated into MEAs and new CCL architectures before and after ASTs (ANL, BNL, Umicore, etc.)
 - Work with FOA partners and implement FC-PAD capabilities to characterize novel catalysts/MEAs
 - Coordinate characterization results with refined models

- **Testing and AST Refinement**
 - Quantify the effect of Co and Ce in the ionomer and how it affects performance (both sheet resistance and local oxygen resistance)
 - Complete 5000 hr benchmarking test
 - Initiate durability testing using a differential cell (currently using GMs 5cm² cell) and validate using new 10cm² differential cell hardware
 - Understand the effect of Co alloying on carbon corrosion at 30C

- **Dissolution Studies**
 - Correlate Pt and Co dissolution with extent of oxidation and oxide structure for PtCo alloy catalysts
 - Measure Pt re-deposition rates as a function of potential using on-line ICP-MS for input to catalyst degradation models
 - On-line ICP-MS measurements of Pt and TM dissolution as a function of catalyst particle size and support
 - EXAFS analysis of changes in Pt and Co coordination and bonding after AST
Summary

• **Relevance/Objective:**
 - Optimize performance and durability of fuel-cell components and assemblies

• **Approach:**
 - Use synergistic combination of modeling and experiments to explore and optimize component properties, behavior, and phenomena

• **Technical Accomplishments:**
 - Understanding of the aqueous stability of PtCo alloys using time-resolved on-line ICP-MS measurements
 - Refinement of catalyst durability AST to better simulate FCTT drive cycle protocol
 - Extensive characterization of multiple PtCo catalysts showed performance loss correlation with accelerated Co leaching/dissolution
 - Quantification of Co loss from CCL to membrane during AST
 - Initiated work with FOA partners

• **Future Work:**
 - Further our understanding of Pt-alloy durability by incorporating new catalyst/MEAs in FC-PAD
 - Elucidate critical bottlenecks for performance and durability from ink to CCL formation to conditioning to testing
 - Use critical characterization data as input for multiscale modeling of cell and components
 - Expand dissolution studies to better understand the behavior of Pt-based TM catalysts
Acknowledgements

DOE EERE: Energy Efficiency and Renewable Energy
Fuel Cell Technologies Office (FCTO)

• Fuel Cells Program Manager & Technology Manager:
 o Dimitrios Papageorgopoulos
 o Greg Kleen

• Organizations we have collaborated with to date

• User Facilities
 o DOE Office of Science: SLAC, ALS-LBNL, APS-ANL, LBNL-Molecular Foundry, CNMS-ORNLM, CNM-ANL
 o NIST: BT-2