

Enabling Hydrogen Infrastructure Through Science-based Codes and Standards

Chris LaFleur

Project Team: Alice Muna, Myra Blaylock, Gabriela Bran-Anleu

Sandia National Laboratories

June 6, 2017

Project ID SCS025 -

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Overview

Timeline

- Project start date: Oct. 2003
- Project end date: Sept. 2017*

*Project continuation and direction determined annually by DOE

Budget

- FY16 DOE Funding: \$230K
- Planned FY17 DOE Funding: \$475K

Barriers

- F. Insufficient technical data to revise standards
- H. Insufficient Synchronization of National Codes and Standards
- K. No Consistent Codification Plan and Process for Synchronization of R&D and Code Development
- L. Usage and Access Restrictions parking structures, tunnels and other usage areas

Partners

Industry & research collaborators:

Linde, Air Products and Chemicals Inc., HySafe

SDO/CDO participation:

NFPA2, ISO TC197, DOT Tunnel Jurisdictions

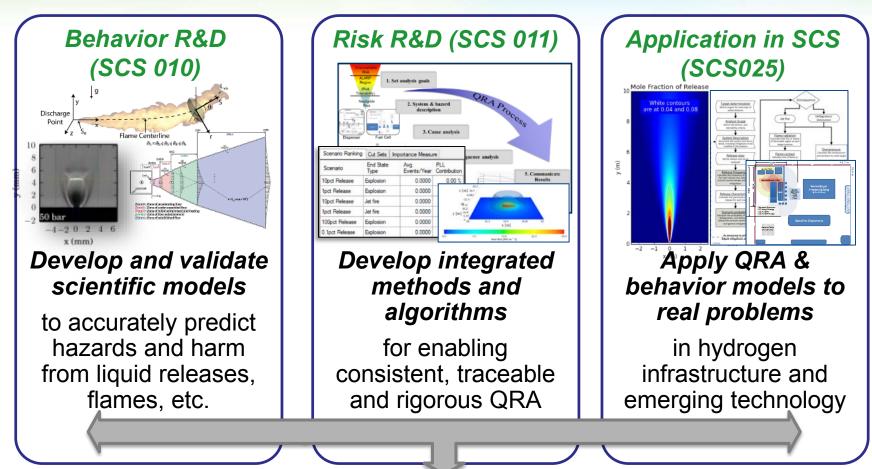
International engagement:

HySafe, HyIndoor, IEA HIA Task 31

H2FCHydrogen and Fuel Cells Program

Relevance

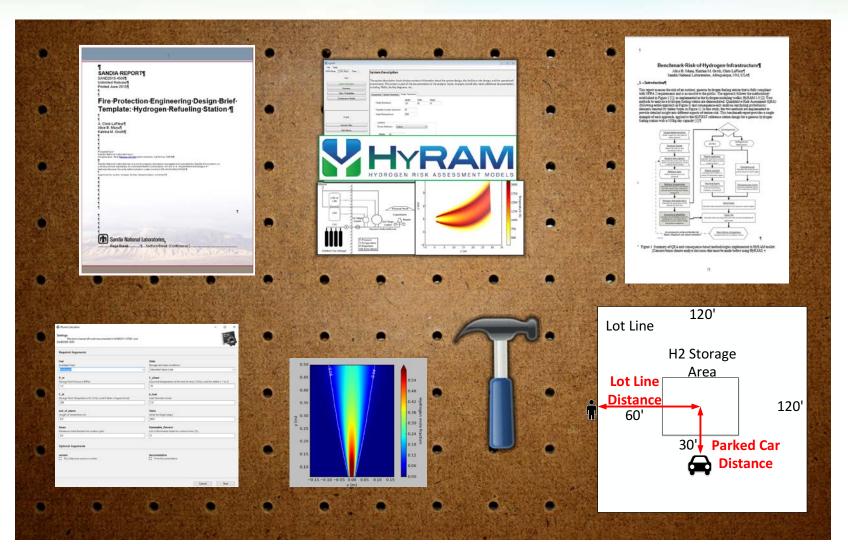
Objective: Utilize fundamental science and engineering to enable the growth of hydrogen infrastructure and improve the basis of Codes & Standards


- Revise/update codes & standards that address critical limitations to station implementation
- Streamline cost and time for station permitting by demonstration of alternative approaches to code compliance

Bar	rier from 2013 SCS MYRDD	SNL Impact
F.	Insufficient technical data to revise standards	Build tools to enable industry-led C&S revision and safety analyses to be based on a strong science & engineering basis
Н.	Insufficient Synchronization of National Codes and Standards	Develop and demonstrate risk-equivalent station design
К.	No Consistent Codification Plan and Process for Synchronization of R&D and Code Development	Apply H2-specific QRA tools & methods to support code improvement and to enable risk-equivalent code compliance option
L.	Usage and Access Restrictions – parking structures, tunnels and other usage areas	Develop scenario specific analysis of hydrogen behavior and consequences and evaluate mitigation features

Project approach: *Coordinated activities* to enable consistent, rigorous, and accepted safety analysis

Developing methods, data, tools for H₂ safety & SCS



Approach / FY16-17 Milestones

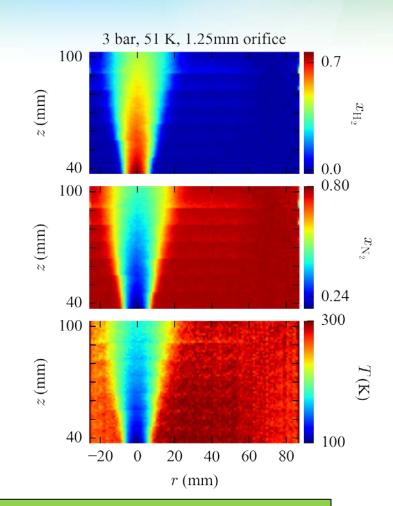
Impact Areas	Completion date or status
Science-based Hydrogen Storage Code Improvements	
Update Science Basis of Liquid Separation Distances in NFPA 2/55	
 Analyze Scenarios for Basis of Code Revision Using Near Field Model Characterize Scenarios with Large Scale Release Experiment Results and Models Develop Risk-Informed Separation Distance Revision Proposals to Code 	June 2017 December 2017 2018/2019
Update Gaseous Separation Distances Based on Revised Risk Criteria	
 Distances Approved by Technical Committee Address Public Comments, Recalculate for Second Draft of NFPA 2 	January 2017 December 2017
Synchronize with International Standards	
ISO TC 197 Working Group – CD2 Review	April 2017
Evaluation of Existing Tunnel for FCEV Safety	
 Comprehension of Massachusetts Specific Safety Concerns Initial Calculations of FCEV compared to traditional Vehicle Fire HRR Develop detail Heat Transfer and CFD models of Tunnel Fire 	October 2016 January 2017 Ongoing (80%)
Demonstrate Performance-based Design for a Real-world station	
 Station selection – Develop PBD design, justification and station permitting 	Several Considered Pending Station Selection

HFCHydrogen and Fuel Cells Program

6

Progress: Science-Based Prescriptive Requirement Revisions Bulk Liquefied Hydrogen

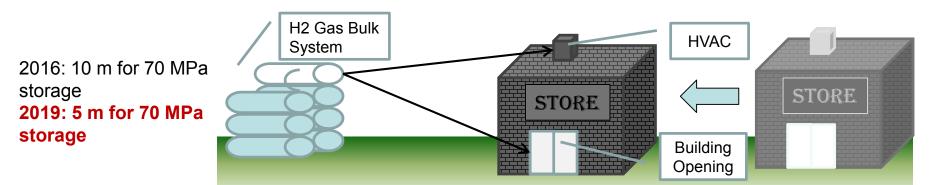
- Goal: Use QRA tools and methods to revise bulk liquid hydrogen system separation distances in NFPA 55/NFPA 2
- Progress:
 - LH2 release modeling validation work briefed to storage task group
 - Modeling of vent cap exit orientation shows vertical release has much smaller horizontal extent of flammable concentration
 - Nine scenarios of concern will be addressed through research and development of LH2 release characterization models


Characterization of the release scenarios will allow the setback distances to be revised based on the physics models

Progress: LH2 Informing Science-based Code Revisions

- Goal: Use QRA tools and methods to revise bulk liquid hydrogen system separation distances in NFPA 55/NFPA 2
- Progress:
 - Using planar Raman imaging to measure concentration of cryogenic releases of 2 and 4 bar hydrogen at 64K
 - Validating testing is ongoing
 - Multi-Party CRADA with Bki and Fire Protection Research Foundation has allowed industry to provide matching funds in support of LH2 model validation experimentation efforts
 - Details given in SCS-010 AMR presentation

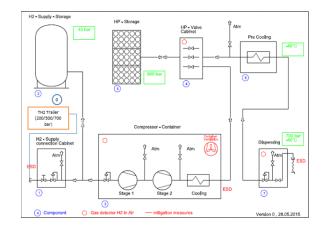
Hydrogen and Fuel Cells Program


Validated LH2 release model will be used to risk-inform the revised LH2 bulk separation

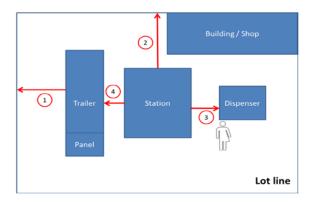
Progress: Science-Based Gaseous Separation Distances

- Goal: Update NFPA 55/2 gaseous separation distances using scientific justification for risk criteria
- Progress:
 - Gaseous revision table was accepted by TC 55/2 for the first draft meeting
 - Public comment period and second draft meeting still remain

		Separation Distance				
					>51.71	
		>0.10	>1.72 to	>20.68	to	
	Code	to 1.72	20.68	to 51.71	103.43	
Exposures	Version	MPa	MPa	MPa	MPa	
Group 1	2016	12 m	14 m	9 m	10 m	
Exposures	2019	5 m	6 m	4 m	(5 m)	
Group 2	2016	6 m	7 m	4 m	5 m	
Exposures	2019	5 m	6 m	3 m	4 m	
Group 3	2016	5 m	6 m	4 m	4 m	
Exposures	2019	4 m	5 m	3 m	4 m	



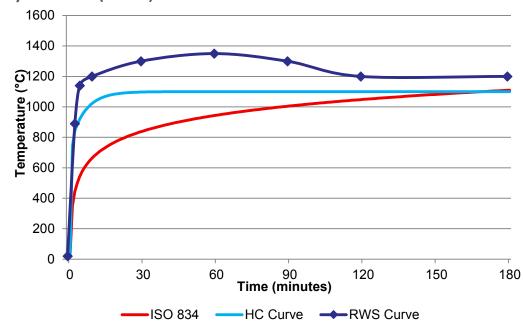
Risk-informed code requirements based on risk threshold revisions enable more sites to readily accept hydrogen infrastructure



Progress: International agreement on approach to safety distances in ISO CD-19880-1 Annex A

- ISO CD-19880-1 Annex A Drafted
 - Sub-team agreed to the approach: US, UK, Japan, Germany, France
 - Developed 3 case studies each with 5 example calculations utilizing HyRAM tool
- Impact:
 - Reducing cross-border challenges
 - EIGA likely to adopt approach using HyRAM tool
- HyRAM directly enabled progress:
 - Real-time use of HyRAM enabled consensus
- Status:
 - ISO now at CD 2 stage voting in April 2017

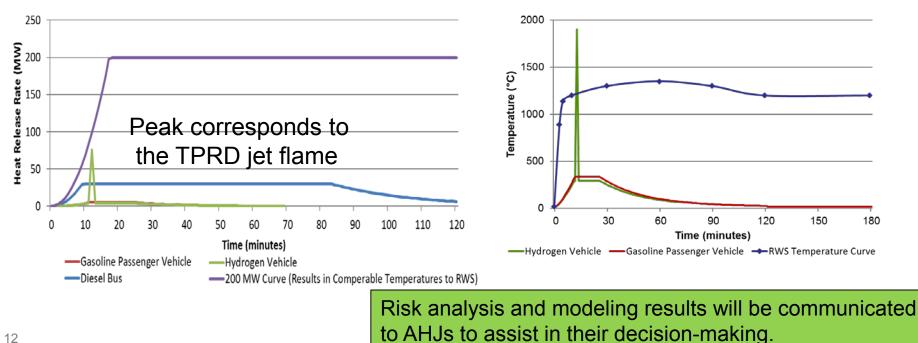
H_FCHydrogen and Fuel Cells Program


HyRAM enables standardization of safety distance calculations in ISO

Approach: Enable FCEV Access to Northeast Corridor Tunnels

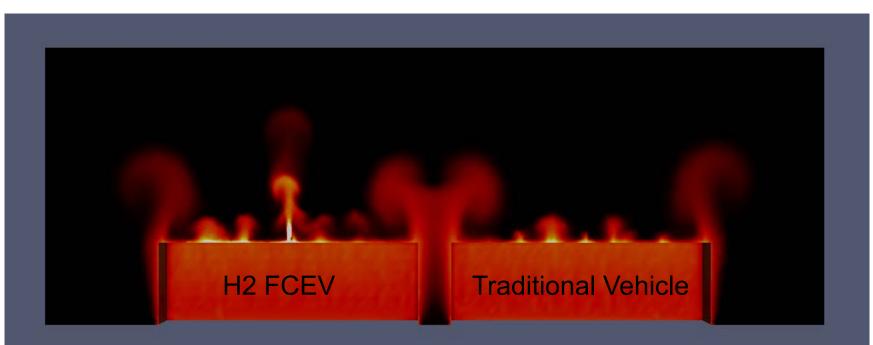
- Goal: Provide scientific modeling and analyses for Northeast corridor AHJs and emergency responders on hydrogen vehicle safety in tunnels
- Approach:
 - Initial analysis to compare anticipated hydrogen release scenario with existing code requirement
 - Coupled Computational Fluid Dynamic (CFD) and Heat Transfer models to evaluate hydrogen fire impact on steel structure

Risk analysis and modeling will provide scientific basis for regulatory determinations for FCEV access



Progress: Tunnel Safety Evaluation

- **Progress:**
 - Conducted initial meeting with Massachusetts DOT and emergency responders and Maryland AHJ
 - Developed risk analysis framework and identified scenarios of concern
 - Initial analysis of scenario involving accident with hydrocarbon fire, FCEV has flipped and the TPRD is aimed at the ceiling



Progress: Tunnel Safety Evaluation

- Coupled Computational Fluid Dynamic (CFD) and Heat Transfer models to evaluate hydrogen fire impact on steel structure
- Complex fire model due to combination of hydrocarbon fire and separate hydrogen fire at TPRD outlet
- Once complete, model will evaluate steel strength and potential for explosive spalling of concrete

Progress: Real World Application of Alternate Means

- Goal: Establish alternate means as a viable station permitting option with our industry partner, Linde
- Progress:
 - Developed compliance substantiation for compressor enclosure
 - 2016 NFPA 2 Hydrogen Equipment Enclosure Issues
 - 2 hour 'wall' separation between H2 storage and compressor/electrical area
 - NFPA 68 compliance (meets European standards)
 - Evaluated multiple leak scenarios to demonstrate that the intent of the prescriptive requirements are met and the alternate design incorporates measures to ensure equivalent system safety
- Looking for opportunity to permit an Alternate Means station that challenges separation distances

Demonstrating alternate means of compliance increases options for industry in siting hydrogen fueling stations and overall confidence in the performance-based approach for station design

Response to Previous Year Reviewers' Comments

2016 AMR Reviewer Comment	Response
"The project should work directly with AHJs in the upcoming states of deployment." "Outreach and benchmarking are both weaknesses."	More is being done to outreach to the AHJs, particularly in the work on tunnel safety analysis.
"Instead of just being science-based, it is important that C&S are evidence-based, which would include science, best practices, and lessons learned."	The technical committee uses their expertise in science, best practices and lessons learned in order to make updates to the code.
Doing a real-world, actual, in-the-retail-fueling- environment application of alternate means will be of great value to various interested parties: station developers and authorities having jurisdiction, along with other city entities involved in the permitting process, and even the state of California (from the funders to the governor's office). The application is very valuable.	Agreed. Further discussions are planned to attempt to engage a station sponsor in the real world application of an alternate means station.

Collaborations

Relationship	Partner	FY 15 - FY16 Role
CRADA	Industry: Linde Group, Industrial gas supplier	CRADA for In-kind support, data exchange for QRA tool and QRA demonstration activities, real world station for alternate means permitting
CRADA	Industry: BKi (Manager of the California Fuel Cell Partnership)	Develop industry stakeholders in support of LH2 Behavior Characterization
CRADA	Code Industry : Fire Protection Research Foundation (NFPA)	Lead stakeholder oversight panel and enable link to NFPA code process
Collaborator	International : IA HySafe	Technical exchanges, ISO
Collaborator	Federal Laboratory: Pacific Northwest National Laboratory	Hydrogen tools portal, Hydrogen Safety Panel, hydrogen mitigations forum
Collaborator	Federal Laboratory: National Renewable Energy Laboratory	Safety code and standard committee leadership, hydrogen mitigations forum

SDO/CDO memberships	Organization memberships*	Technical exchanges, presentations & discussions	
NFPA 2 ICC	HySafe	CaFCP, ASME	
ISO TC 197 WG24	IEA HIA Task 31 H2USA Locations WG	DOE Hydrogen Safety Panel, DOT FRA	
CGA	H2USA Stations WG	PNNL, NREL	
CSA HGV4.9	DOE CSTT	AIST (Japan), HyIndoor (EU)	

Remaining Challenges and Barriers

- Science-based Code Improvements
 - Validation of the cold plume release model does not characterize liquid release scenarios needed for code committee revisions to bulk liquid hydrogen separation distance table
 - Liquefied hydrogen system leak size and frequency data is not available to allow the QRA to inform the code committee
 - Consensus agreement on suitable means of quantifying hydrogen system mitigation features is not reached
- Hydrogen Tunnel Safety
 - Local AHJ acceptance may be on a case-by-case basis since each tunnel is unique

Proposed Future Work

- Remainder of FY17
 - Analyze LH2 scenarios with cold plume model evaluate revisions to separation distances
 - Complete coupled CFD and heat transfer modeling scenarios to support hydrogen vehicle tunnel safety
- FY18
 - Refine characterization of LH2 releases with validated cold plume release and identify full scale modeling needs to provide sound scientific basis for revised bulk LH2 separation distances in NFPA 2/55.
- Out-years
 - Characterize full bulk LH2 release scenarios to support mid-cycle temporary interim agreement (TIA) code revision
- Any proposed future work is subject to change based on funding levels.

Technology Transfer Activities

- Technology transfer strategies are tied to the accessibility of HyRAM QRA tool kit to other users (AHJs, Station designers, etc.) utilizing alternative means of code compliance
- Refer to AMR SCS-011 presentation

HyRAM File Help	8.0.0
NPPA Mode GRA Mode Tests Input	System Description The system description input window contains information about the system design, the facility or site design, and the operational environment. This screen is part of the documentation of the analysis inputs. Analysts should also retain additional documentation, including P&IDs, facility diagrams, etc.
Consequence Models	Componeds System Parameters Foolity Promotors Facility Dimensions Length Width Height
Output	Population (further of persona): 50 Yearly Working Hours: 2000
Scenario Stats	Cross Datibutor: Uniform +
	HYRRANA HYDROGEN RISK ASSESSMENT MODELS
LH2 or LHe Ist Stage CH2 m (R)	Exhaust Hood 3 1750 Experiment 1 1250 Vacuum Jacketed Lines 0 750
T: Ter R: Re	issure nperature guidator low Metter

Summary

- Science-based Code Improvements
 - Addresses: Reducing barriers related to lack of technical data for SCS revision
 - By: Providing expertise to support science-based code revisions of bulk LH2 separation distances
- ISO TC 197
 - Addresses: Harmonization with international codes
 - By: Active technical leadership on working groups revising risk-based methodology
- Northeast Corridor Tunnel Safety Analysis:
 - Addresses: Usage and Access Restrictions parking structures, tunnels and other usage areas
 - By: Providing scientific analysis for regulatory determinations of FCEV access
- Alternate Means of Code Compliance
 - Addresses: Education of AHJs, Insufficient technical data to revise standards
 - By: Validating and demonstrating alternative methods of code compliance

Technical Back-Up Slides

Details of LH2 Prescriptive Code Revision Scenario

Selection and Prioritization

- CGA P-28 OSHA Process Safety Management and EPA Risk Management Plan Guidance Document for Bulk Liquid Hydrogen Systems was used as a basis for typical LH2 system definition and HAZOP scenario identification
- Each scenario was reviewed and assigned an Even Hazard and Hazard Severity value.
- Based on these values, the scenario was given a risk ranking which was used to prioritize the scenario

Event Likelihood Classification

Level	Annual Probability	Probability Description
1	Frequent > 1.0	Expected to occur once per year or more frequently.
2	Reasonably probable 1.0 to 0.1	Expected to occur once per 10 years.
3	Occasional 0.01 to 0.1	Expected to occur once per 100 years.
4	Remote 0.001 to 0.01	Expected to occur once per 1000 years.
5	Extremely remote 0.0001 to 0.001	Expected to occur once per 10,000 years.
6	Improbable < 0.0001	Expected to occur less than once per 10,000 years. Extremely unlikely to occur.

Hazard Severity Classification

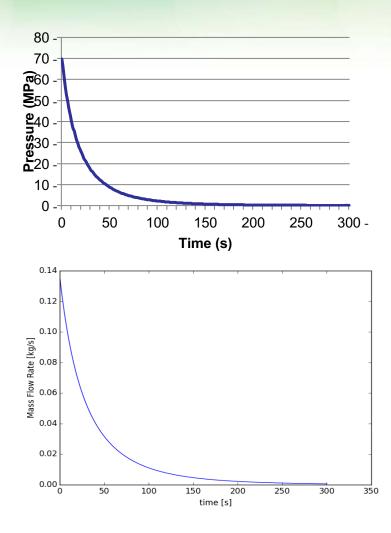
Level	Description	Potential Consequences
1	Catastrophic	May cause fatality to non-associated members of the public.
2	Critical	May cause severe injury to non-associated members of the public, fatality or serious injury to works of the public, fatality or serious injury to workers of persons conducting business at a refueling site or significant damage to equipment/facilities.
3	Marginal	May cause minor injury, or minor system damage.
4	Negligible	Will not result in injury or system damage.

Likelihood							
-		1	2	3	4	5	6
Ę	1	1	1	1	2	3	4
Vel	2	1	1	2	3	3	4
Se	3	2	2	3	3	4	4
	4	4	4	4	4	4	4
1: H	igh Ri	isk					
2: M	odera	ate Ri	sk				
3: Lo	ow Ri	sk					
4: R	outine	e Risl	k				
	2: M 3: Lo	4 1: High R 2: Modera 3: Low Ri	A 1 1 1 2 1 2 1 3 2 4 4 1: High Risk 2: Moderate Ri 3: Low Risk 3: Low Risk	Atic 1 2 1 1 1 1 2 1 1 1 3 2 2 2 4 4 4 4 1: High Risk 2: Moderate Risk 5: Moderate Risk	I 1 2 3 1 1 1 1 1 2 1 1 2 3 3 2 2 3 4 4 4 4 1: High Risk 2: Moderate Risk 3: Low Risk	1 2 3 4 1 1 1 2 2 1 1 2 3 3 2 2 3 3 4 4 4 4 4 1: High Risk 2: Moderate Risk 3: Low Risk 3: Low Risk	I 1 2 3 4 5 1 1 1 1 2 3 2 1 1 2 3 3 2 1 1 2 3 3 3 2 2 3 3 4 4 4 4 4 4 4 1: High Risk 2: Moderate Risk 3: Low Risk 3: Low Risk

LH2 Prioritized Scenarios to be Used for Separation Distance Revision

		HAZOP I	Number and Description		HAZO
	Release scenarios during liquid transfer to bulk storage tank	1.18	High flow of gaseous hydrogen from trailer vent stack due to venting excess pressure after LH2 transfer	Release scenarios during normal system	4.15
		1.19	Normal flow from trailer vent stack due to venting excess pressure after LH2 transfer	operation	6.15
		1.6	High flow from line rupture, valve or component failure during transfer process		
		1.4	High temperature due to external fire causes high flow venting through tank vent stack		2.1
		1.8	Reverse flow during transfer process caused by human error and pressure mismanagement		
		1.16	Loss of containment from external impacts, consider all causes		

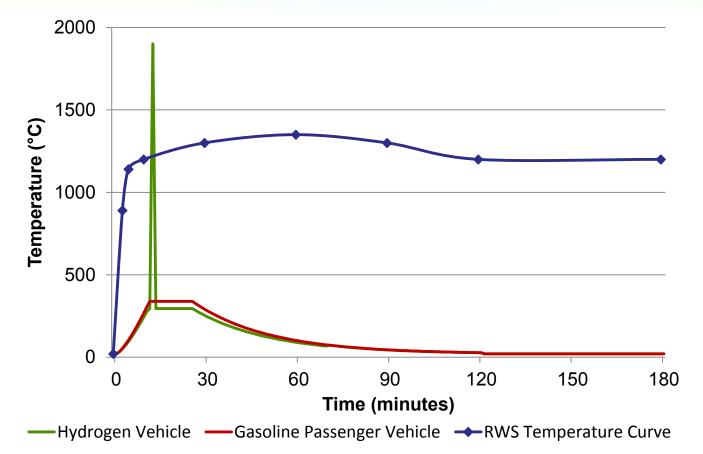
HAZOP Number and Description


4.15	Loss of containment from pipe
	leading from tank to vaporizer
	or vaporizer itself caused by
	thermal cycles or ice falling
	from vaporizers

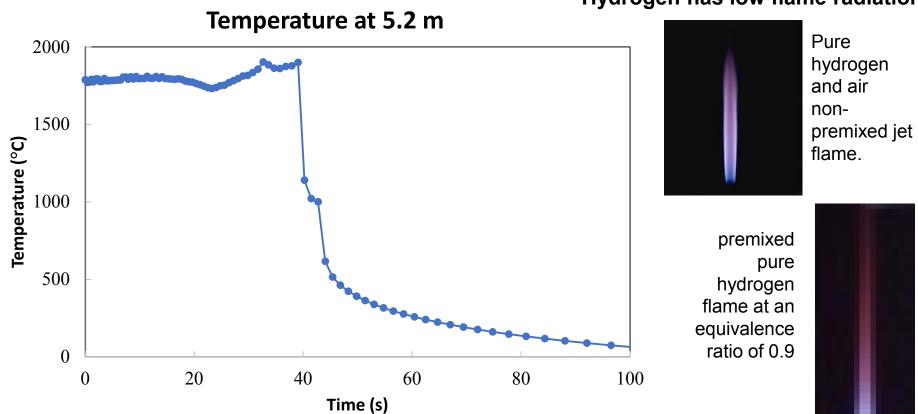
- 6.15 Misdirected flow caused by operator error resulting in large low level release of cold gaseous hydrogen through bottom drain valve of vent stack during normal tank venting process
- 2.1 High pressure because of a leak in inner vessel allowing hydrogen into the vacuum area

H_FCHydrogen and Fuel Cells Program

Hydrogen Release from a TPRD


- A hydrogen vehicle is exposed to an external fire causing the TPRD to activate -
- The hydrogen storage tank has the following characteristics: -
 - -- 125-liters
 - --70MPa
 - -- TPRD orifice size 2.25 mm -
- Vent time is approximately 300 seconds -
- Most of the hydrogen is released within the first minute

Temperature Calculations


- Spike in temperature is brief (40 seconds)
- Hydrogen radiative heat is low compared to hydrocarbon fires
- Hydrogen-caused temperature spike reduces immediately once flame jet recedes below ceiling height

Temperature Calculations at Ceiling for First 100 Seconds

Hydrogen has low flame radiation

Progress: Technical analysis performed to support hydrogen vehicle tunnel safety

- Goal: Educate east coast corridor AHJs and emergency responders on hydrogen vehicle safety in tunnels
- Progress:
 - Sandia conducted a risk
 assessment to determine
 possible scenarios
 - Certain scenarios require further modeling and heat transfer analysis

Risk analysis and modeling results will be communicated to AHJs to assist in their decision-making.

HLFC Hydrogen and Fuel Cells Program