

incorporated

Diode Laser Sensor for Contaminants in Hydrogen Fuel

June 6, 2017 Project SCS028

Mark Paige

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start Date: 04/11/16 Project End Date: 04/10/18 (SBIR Phase II)

Barriers

- C. Safety is Not Always Treated as a Continuous Process
- G. Insufficient Technical Data to Revise Standards
- No instrument for measurements at fuel stations samples are sent to a lab

No assurance of clean fuel supply

Budget

Total Project Budget: \$1,010,000 Spending as of April 1, 2016: \$404,000

Partners

- DOE Office of Science (funding source)
- NREL
- Los Alamos Nat. Lab

Objectives

Construct & test a portable diode laser H₂ **contaminant detector for the lab & fuel station**

- C. Safety is Not Always Treated as a Continuous Process
 - Instrument will perform continuous measurements -1 sec/contaminant
 - Provide real time info
- G. Insufficient Technical Data to Revise Standards

Instrument will measure many contaminants - carbon monoxide, ammonia, hydrogen sulfide, water vapor, carbon dioxide, formaldehyde, formic acid, hydrogen chloride, methane

Can be tailored to measure all or as few as needed

	Proposed Sensor
<u>Requirement</u>	Specification
Detect H_2O , CO , S , NH_3 , & C_xH_x	*
<1 minute measurement	10 s
Gas pressure - 900 bar	
Environmental conditions -20 to 45 C	🗸
Calibrate less than 2 times/yr	
Sample every fill	🧳
Detect contaminants at 10x above SAE J2719	levels
1 ft ³ size	🧳
Operable by skilled technician	
ala	

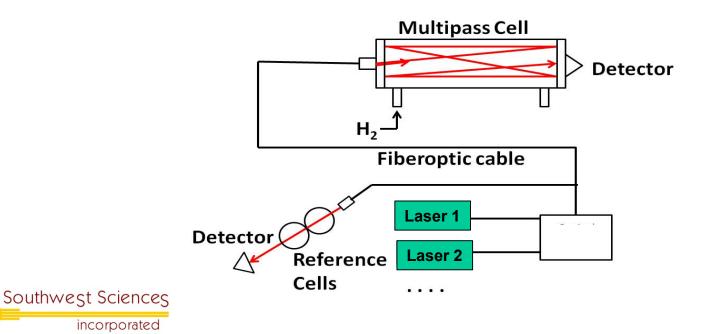
*diode laser sensitivity doesn't meet sensitivity levels for S or hydrocarbons

1. H2FIRST Hydrogen contaminant detector task: Requirement document and market survey (NREL, Savannah River NL) https://energy.gov/sites/prod/files/2015/04/f22/fcto_h2first_hydrogen_contaminant_detector_report_april2015.pdf

Relevance Detectable contaminants with proposed instrument

Contaminant	Impurity Limit*	Expected Sensitivity
Carbon Monoxide	0.2	0.03
Ammonia	0.1	0.02
Hydrogen Sulfide	0.004	0.3
Water Vapor	5	0.03
Carbon Dioxide	2	0.06
Formaldehyde	0.01	0.2
Formic Acid	0.2	0.04
Hydrogen Chloride	0.05	0.008
Methane	100	0.02

First four contaminants are most common

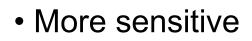


*Appendix C from MYRD&D Plan (SAE J2719)

Approach Optical Absorption Spectroscopy

<u>Beer's law</u>: Light absorbed α Conc. × optical pathlength

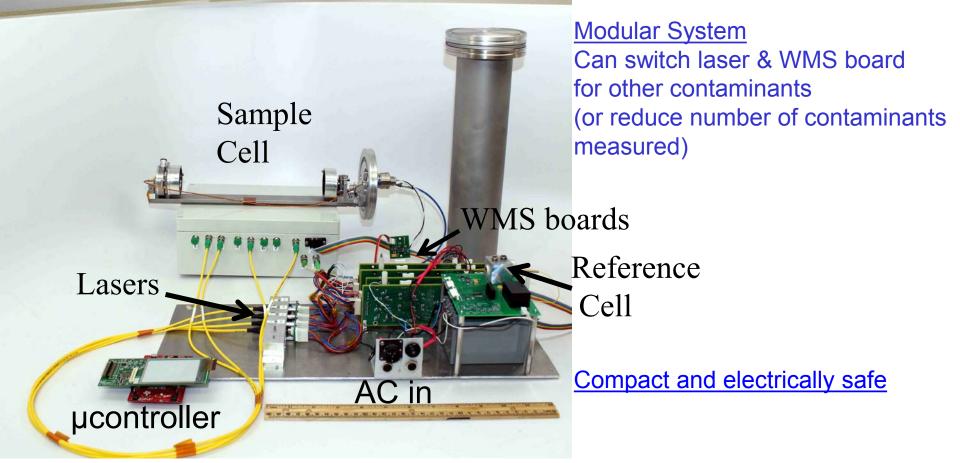
- Wavelength Modulation Spectroscopy can detect 1 absorbed photon out of 100,000
- Multipass cell 20 m optical path in 25 cm base path
- Combine multiple diode lasers with fiber optics



Approach

Infrared Measurements

- Telecom like (field worthy)
- Less expensive
- Fiber coupled

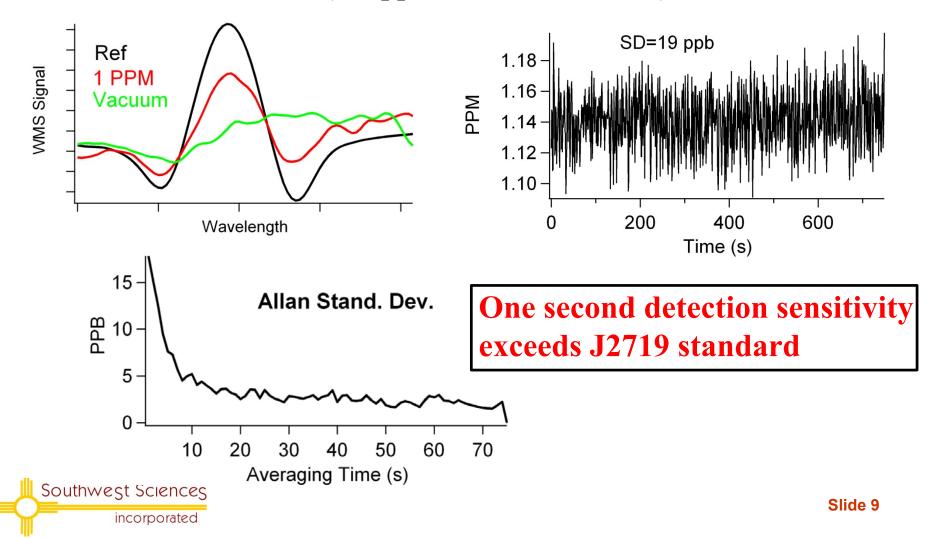

Mid IR

Multigas sensing for > 2 gases – combining beams with fiberoptics is novel approach

Expands usefulness of diode laser sensing

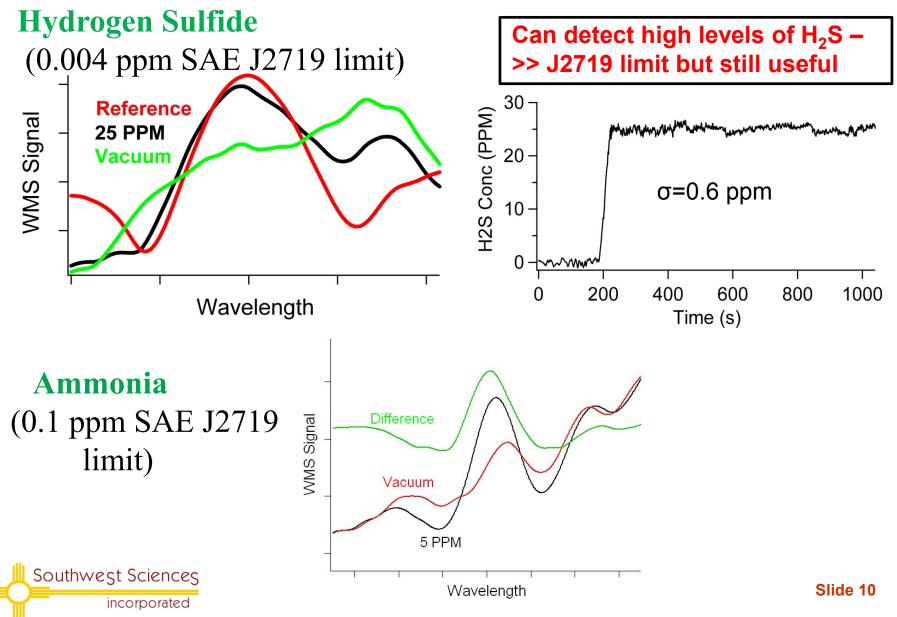
Accomplishments Instrument Development & Progress

Real time measurements of Carbon Monoxide, Ammonia, Hydrogen Sulfide, & Water Vapor

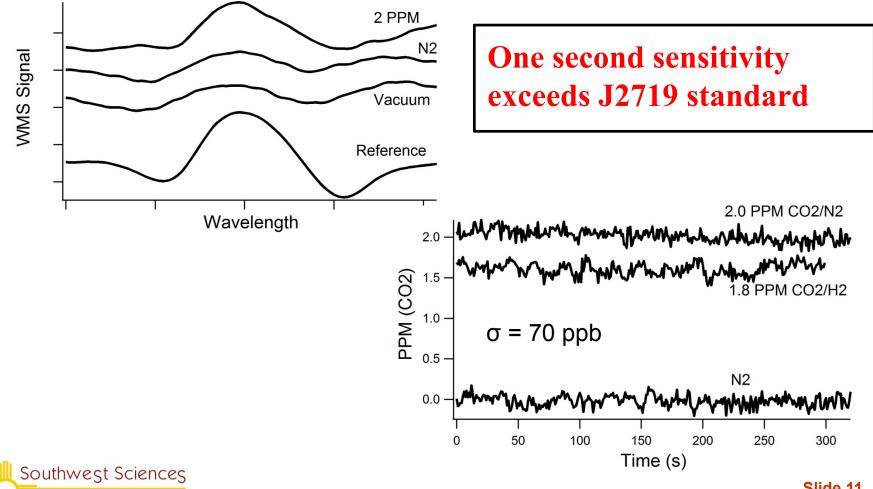

Southwest Sciences

Preliminary Measurements

Carbon monoxide (0.2 ppm SAE J2719 limit)


Accomplishments

& Progress


Accomplishments Preliminary Measurements

& Progress

Accomplishments **Preliminary Measurements** & Progress

Carbon Dioxide (2 ppm SAE J2719 limit)

incorporated

Slide 11

Response to Previous Year Reviewer's Comments

This project was not reviewed last year

Collaborations

- Monthly teleconferences with personnel from DOE, Los Alamos, NREL Fuel Cell Programs
- Presentation at DOE Tech Team meeting
- Small business voucher application on alternate status for testing with NREL dispenser system
- Interest at California Measurement Standards Lab & Air Products

Remaining Challenges

- Optimize sample cell
- Instrument operation algorithms for multigas sensing
- Minimizing baseline artifacts associated with optical system
- Examine artifacts with sticky gases NH₃, H₂O, H₂S
- Establish gas handling procedure

Proposed Future Work

- Complete instrument
- Add capability for other contaminants CO₂, HCOOH, H₂CO, CH₄, HCl
- Upgrade instrument for outdoor use
- Testing at NREL, Los Alamos, California Measurement Standards Lab

(Project end date 4-11-18)

Any proposed future work is subject to change based on funding levels

Southwest Sciences

Commercialization

In house manufacturing until technology established & stations are built

3 Versions: Lab Portable Station

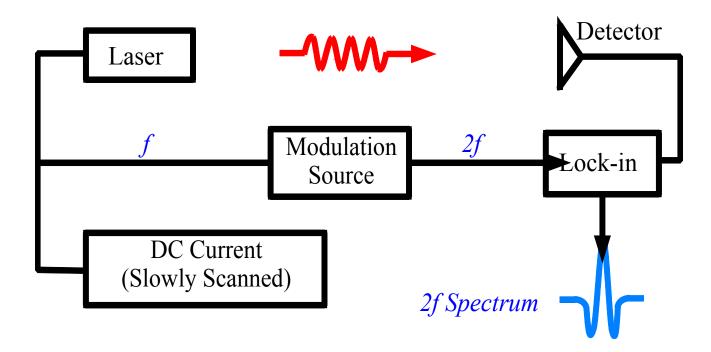
Licensing to gas supplier or analytical instrument company

Existing Hydrogen Stations \underline{US}^* \underline{World}^+ 60 + 26 planned274

120,000 conventional gas stations in US

*DOE Alt Fuel website, +H2stations.org

Summary


- Developing diode laser H_2 contaminant detector for real time measurements in fuel station
- Ensure fuel quality & provide method of making frequent field measurements providing more data
- Capable of detecting at SAE J2719 levels CO, CO₂,CH₄, and high levels of S. Expect H₂O, NH₃, HCl will be demonstrated at better than SAE J2719 levels.
- Expanding multigas sensing possibilities with diode lasers

incorporated

Technical Back-Up Slides

Technical Back-Up Wavelength Modulation Spectroscopy

- High frequency measurements to overcome laser noise
- Derivative like spectrum results
- Detection limit low 10⁻⁵ absorbance level (10⁻³ for conventional absorption spectroscopy)

Technical Back-Up

Field Measurements

NSF Jet Hygrometer

Commercial Methane Flux

R&D 100 winner

Balloon Measurements

Commercial Natural Gas Leak Detector R&D 100 winner

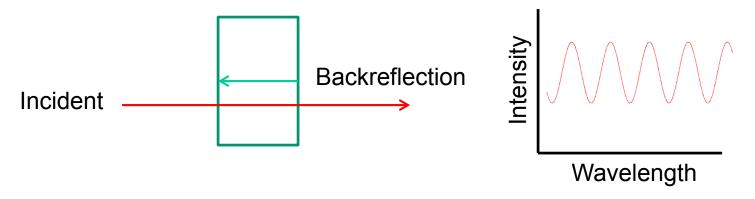
Oil Refinery Perimeter Monitor

Rocket Measurements At Mach 7

Slide 20

- Reference beam records spectrum in sealed cell
- Sample beam spectrum fit with reference spectrum
- Fit result scaled by calibration with known sample and zero gas

C = Fit × SpanFactor - Offset


- Span factor stable indefinitely no need for cal gas
- Offset drifts with temperature want offset drift to be small

compared to signal level

Interference Fringes

 Result of backreflections from partially transmissive surfaces

- Sources windows, fiber connections, lens, scattering
- Offset drift sets detection limit

Technical Back-Up