Hydrogen Storage Program Area

-Plenary Presentation-

Ned T. Stetson

Fuel Cell Technologies Office

2017 Annual Merit Review and Peer Evaluation Meeting

June 5 - 9, 2017
Goals and Objectives

Objective: Develop H₂ storage technologies with performance to enable fuel cell products to be competitive with conventional technologies.

For Light-Duty Vehicles:
- Comparable driving range
- Similar refueling time (~3 minutes)
- Comparable passenger and cargo space
- Equivalent level of safety

Onboard H₂ storage targets to be reviewed approximately every five years and revised as appropriate.

GOAL: Develop advanced hydrogen storage technologies to enable successful commercialization of hydrogen fuel cell products.
Onboard Storage Target Revisions

Vehicle performance has improved since the 2008/09 target review

- Fuel economy range increase from 48-53 to 49-67 miles per kg H₂
- Autonomie (ANL) available for full vehicle performance analysis

Onboard storage targets are periodically reviewed in terms of current vehicle performance data and revised as appropriate
Revised Onboard H₂ Storage Targets

Revised System Targets for Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

<table>
<thead>
<tr>
<th>Storage Parameter</th>
<th>Units</th>
<th>2020 (previous)</th>
<th>2020 (new)</th>
<th>2025 (new)</th>
<th>Ultimate (previous)</th>
<th>Ultimate (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Gravimetric Capacity:</td>
<td>kWh/kg (kg H₂/kg system)</td>
<td>1.8 (0.055)</td>
<td>1.5 (0.045)</td>
<td>1.8 (0.055)</td>
<td>2.5 (0.075)</td>
<td>2.2 (0.065)</td>
</tr>
<tr>
<td>System Volumetric Capacity:</td>
<td>kWh/L (kg H₂/L system)</td>
<td>1.3 (0.040)</td>
<td>1.0 (0.030)</td>
<td>1.3 (0.040)</td>
<td>2.3 (0.070)</td>
<td>1.7 (0.050)</td>
</tr>
<tr>
<td>Storage System Cost:</td>
<td>$/kWh net ($/kg H₂)</td>
<td>10 (333)</td>
<td>10 (333)</td>
<td>9 (300)</td>
<td>8 (266)</td>
<td>8 (266)</td>
</tr>
<tr>
<td>Charging / Discharging Rates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System fill time</td>
<td>min</td>
<td>3.3</td>
<td>3-5</td>
<td>3-5</td>
<td>2.5</td>
<td>3-5</td>
</tr>
</tbody>
</table>

System target revisions considered vehicle performance
New Onboard H₂ Storage Targets

New System Targets for Onboard H₂ Storage for Light-Duty Fuel Cell Vehicles

<table>
<thead>
<tr>
<th>Storage Parameter</th>
<th>Units</th>
<th>2020 (new)</th>
<th>2025 (new)</th>
<th>Ultimate (new)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging / Discharging Rates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average flow rate</td>
<td>(g/s)/kW</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>New target to differentiate between Average flow rate & Minimum full flow rate</td>
</tr>
<tr>
<td>Dormancy:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dormancy time target (minimum until first release from initial 95% usable capacity)</td>
<td>Days</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>New targets to address Dormancy (a challenge for systems that operate below ambient temperate)</td>
</tr>
<tr>
<td>Boil-off loss target (max reduction from initial 95% usable capacity after 30 days)</td>
<td>%</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

The full set of onboard H₂ storage targets available online at: https://energy.gov/node/1315186
Current Status vs Targets

<table>
<thead>
<tr>
<th>Storage Targets</th>
<th>Gravimetric kWh/kg (kg H₂/kg system)</th>
<th>Volumetric kWh/L (kg H₂/L system)</th>
<th>Costs 1 $/kWh ($/kg H₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>1.5 (0.045)</td>
<td>1.0 (0.030)</td>
<td>$10 ($333)</td>
</tr>
<tr>
<td>2025</td>
<td>1.8 (0.055)</td>
<td>1.3 (0.040)</td>
<td>$9 ($300)</td>
</tr>
<tr>
<td>Ultimate</td>
<td>2.2 (0.065)</td>
<td>1.7 (0.050)</td>
<td>$8 ($266)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Status 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>700 bar compressed (5.6 kg H₂, Type IV, Single Tank)</td>
<td>1.4 (0.042)</td>
</tr>
</tbody>
</table>

1 Projected at 500,000 units/year
Objective: Achieve a driving range competitive with conventional vehicles for full span of light-duty vehicles, while meeting packaging, cost, safety, & performance requirements
FY 2017 Appropriation = $15.6M

FY2017 Funding Allocations by Focus Area

- **Materials R&D**: $9 million
- **Engineering R&D**: $1 million
- **Advanced Tank R&D**: $3 million
- **Analysis**: $2 million

Emphasis is on early phase R&D for H₂ storage materials and lower cost physical storage.

Number of Projects in Portfolio by Focus Area
(Includes subs directly funded by DOE)

- Materials: 12 projects
- Engineering: 4 projects
- Advanced Tanks: 6 projects
- Analysis: 24 projects
Physical Storage Activities
Current Status – 700 Bar System Cost Breakout

- **Cost breakdown at 500k systems/yr.**
- System cost is **dominated**, 72%, by **composite materials and processing**
- Carbon Fiber composite cost:
 - ~ 50% Carbon fiber precursor
 - ~ 50% Precursor fiber conversion
- BOP costs are a major cost contributor, especially at low annual production volumes

Carbon fiber cost reduction is needed to drive down cost of 700 bar storage systems
Carbon fiber cost reduction is needed to drive down cost of 700 bar storage systems

- **Cost breakdown** at 500k systems/yr.
- System cost is **dominated**, 72%, by composite materials and processing
- Carbon Fiber composite cost:
 - ~ 50% Carbon fiber precursor
 - ~ 50% Precursor fiber conversion
- BOP costs are a major cost contributor, especially at low annual production volumes

• Precursor development for low-cost, high-strength carbon fiber (CF) for use in composite overwrapped pressure vessel applications
 – Resulting CF to have properties similar to Toray T700S
 – Target cost of $12.60/kg of CF

• Areas of interest:
 – PAN-based fibers formulated with co-monomers and additives that permit lower cost processing to produce the PAN fiber than conventional solution spinning processes, and or that reduce the conversion cost of the PAN-fiber to CF;
 – Polyolefin-based fibers capable of being cost effectively converted into high-strength CF;
 – Novel material precursor fibers that can lead to low-cost, high-strength CF production.
Accomplishments - Project Highlights

Alternative Resin and Manufacturing
[Materia/MSU/Spencer Composites/Hypercomp Engineering]

- Reducing composite volume/mass through use of alternative resin and manufacturing processes
- Improved process cut resin infusion time in half for prototype tanks

Conformable 700 bar H₂ Storage Systems
[CTE/HECR/UT/Stan Sanders]

- Developing conformable 700 bar pressure vessels without use of carbon fiber composites
- Demonstrated vessel with a 34,000 psi burst (2345 bar), exceeding the 2.25 safety margin for 700 bar systems

Addressing cost through reduced carbon fiber use
Accomplishments - Project Highlights

Alternative Materials for BOP [SNL/Hy-Performance Materials]

- Identifying alternative alloys to lower BOP cost and weight through testing and computational material screening
- **Identified alloys with potential to reduce cost and weight by >50% compared to 316L SS baseline**

Insulation for Cryogenic Storage Tanks [Vencore/Aspen Aerogels/Energy Florida/Hexagon Lincoln/IBT/NASA-KSC/SRNL]

- Developing integrated advanced insulation system capable of meeting dormancy requirements for vehicle applications
- **Down-selection of concept technologies in-progress**

Addressing Balance-of-Plant
Institute for Advanced Composites Manufacturing Innovation

- Institute of Manufacturing USA
- Managed by the EERE Advanced Manufacturing Office
- Technology Focus Areas:
 - Vehicles
 - Wind Turbine Blades
 - Compressed Gas Storage Vessels
 - Design, Modeling & Simulation
 - Composite Materials & Processes

Leveraged project: Thermoplastic Composite Compressed Gas Storage Tanks

- Project lead: DuPont
- Partners:
 - Composite Prototyping Center (CPC)
 - Steelhead Composites
 - University of Dayton Research Institute (UDRI)
- Kick-off: FY2017, Q1

Leveraging efforts of the Institute for Advanced Composites Manufacturing Innovation
Materials-Based Storage Activities
HyMARC: Hydrogen Materials – Advanced Research Consortium
Enabling twice the energy density for onboard H₂ storage

- Applied materials development
 - Novel material concepts
 - High-risk, high-reward
- Concept feasibility demonstration
- Advanced development of viable concepts

- Foundational research
- Material development tools
 - Foundational R&D
 - Computational modeling development
 - Synthetic/characterization protocol development
- Guidance to individual projects
- Database development

- Characterization resources
 - “User-facility” for HyMARC projects
- Characterization method development
- Validation activities
 - Validation of Performance
 - Validation of “Theories”
Effective thermal energy for H₂ release:

\[\Delta E(T) = \Delta H^\circ (T) + E_a \]

HyMARC – Understanding the phenomena of hydrogen interactions with materials.

Task 1: Thermodynamics
Task 2: Transport
Task 3: Gas-surface interactions
Task 4: Solid-solid interfaces
Task 5: Additives and dopants
Task 6: Materials informatics

Focusing on overcoming thermodynamic and kinetic barriers simultaneously.
HyMARC – Understanding the phenomena of hydrogen interactions with materials

Thermodynamics:
- Mg-B-H, Li-N-H

- LEIS on model metals (Mg, W)
- Oxidation (NaAlH₄, Mg(BH₄)₂)
- H₂ dissociation (Mg, MgB₂)

- Isotropic interstitial diffusion (PdHₓ)
- Anisotropic vacancy diffusion (MgH₂)
- Complex hydride diffusion (Mg(BH₄)₂)

- Borohydride decomposition pathways in MgBₓHᵧ

- Interstitial topotactic interface (Pd/PdHₓ)
- Simple structural transformation (Mg/MgH₂)
- Complex reactive interface (MgBₓHᵧ/MgBnHm)

- TiF₃/TiCl₃
- Ti in NaAlH₄, MgB₂/Mg(BH₄)₂

- MOF-74, CuBTC
- Graphene (doped/functionalized)

Surfaces/interfacial diffusion

Surface reactions

Sorption

Additives

Phase nucleation & evolution

Chemical bond activation

Studying model systems to isolate physical factors and mechanisms

ST127, ST128, ST129, ST130
HyMARC accomplishments – theory capabilities

Improved sorbent isotherms

Recipes for integrating different levels of theory in sorbent isotherm models

Seedling: Chung/PSU

Accurate hydride thermodynamics

Finite-\(T\) free energy, environment- and morphology-dependent thermodynamics

Seedlings: Liu/ANL, Severa/U. Hawaii

Solid mechanics & interfaces in hydrides

Internal and confinement stress effects; reactive diffuse interfaces

Seedlings: Liu/ANL, Severa/U. Hawaii

Kinetic modeling

Semiempirical kinetic modeling and rate analysis; phase evolution kinetics

Seedlings: Liu/ANL, Severa/U. Hawaii

Additional accomplishments in compiling databases and reference libraries (“Task 6”):

- Simulated & measured spectroscopy database (NMR, FTIR, XAS/XES) for identifying \(\text{MgB}_x\text{H}_y\) (preparing manuscript w/LBNL/SNL/HySCORE)
- Library of analytical free energies for Li-N-H (published) and Mg-B-H (preparing manuscript), with validation at a range of pressures via NMR (w/SNL/HySCORE)
- Database of classical potentials for simulating borohydride mixtures and interfaces (w/SNL)

Seedling projects help focus theory method development prioritization
HyMARC accomplishment – understanding role of additives on sorption kinetics

- Investigated model system Ti-doped NaAlH₄ via AP-XPS, LEIS and Auger spectroscopy
 - Detected no Ti species on sample surface before or during desorption, reappears during absorption
 - Disproved models invoking surface Ti during dehydrogenation reaction

Four Al species detected by AP-XPS during dehydrogenation

Data supports proposed zipper mechanism

Proposed mechanisms are evaluated based on experimental data

HyMARC accomplishment – providing support to seedling projects

NREL and NCNR carries out neutron vibrational spectroscopy measurements on LiBH₄ infiltrated mesoporous carbon samples from UMSL

Can nanoconfinement in functionalized porous materials facilitate reversible hydrogen storage reactions?
• NVS show LiBH₄ infiltrated
• Shifting and broadening show there is an effect of confinement
• Degree of N-doping enhances BH₄⁻ orientational mobilities

Accelerating rate of progress in the development of H₂ storage materials
HyMARC accomplishment – Validating hydrogen sorption measurements and reporting

Led an international inter-laboratory volumetric capacity
H$_2$ adsorption measurement round-robin study

- Promoted valid comparisons of hydrogen-storage materials
 - necessary to evaluate implementations of protocols
- Decreased irreproducibility due to systematic and “black box” errors
 - NREL gives direct feedback on data
- Determining a “natural” spread of data from instrument and operator variables

Promoting standard protocols for performing and reporting sorption measurements
HyMARC accomplishment – Validating hydrogen sorption measurements and reporting

Led an international inter-laboratory volumetric capacity H₂ adsorption measurement round-robin study

- Promoted valid comparisons of hydrogen-storage materials
 - necessary to evaluate implementations of protocols
- Decreased irreproducibility due to systematic and “black box” errors
 - NREL gives direct feedback on data
- Determining a “natural” spread of data from instrument and operator variables

Errors Corrected from > 400% to < 5% spread

Promoting standard protocols for performing and reporting sorption measurements
Accomplishments: Lab Team Publications

32: Publications published or submitted for publication
4: Patents applications submitted
7: Manuscripts in preparation as of April 2017
2: Selected as cover features

The lab teams are producing high-value R&D and disseminating it to the R&D community.
Accomplishments - HyMARC Project Highlights

Surface functionalized mesoporous carbons [HyMARC seedling—UMSL]

- Demonstrating ability of functionalized mesoporous carbons to facilitate reversible H₂ sorption reactions of hydride materials
- Prepared N-doped carbons and demonstrated infiltration of Al and B-based materials

Electrolyte Assisted Storage Reactions [HyMARC seedling—Liox Power]

- Improving reaction kinetics through use of electrolytes to facilitate atomic rearrangement and diffusion
- Have carried out initial screening studies of possible electrolytes

Accelerating development of improved hydrogen storage materials
Accomplishments - HyMARC Project Highlights

“Graphene-wrapped” hydrides [HyMARC seedling—ANL]
- Encapsulating nanoparticles of complex hydrides with graphene to enhance reversibility and kinetics
- Demonstrated 9 wt% uptake in NaBH₄ systems with 80% regenerable release over 6 cycles

SEM of NaBH₄ nanoparticles wrapped in graphene

Magnesium boride etherates [HyMARC seedling—U. Hawaii]
- Improve reversibility of Mg(BH₄)₂ through formation of MgB₂-etherates
- Demonstrated the formation of significant amounts of β-Mg(BH₄)₂ at 300 °C

TGA of hydrogenated ball milled MgB₂-THF

Accelerating development of improved hydrogen storage materials
Accomplishments - HyMARC Project Highlights

Novel boron-containing polymers [HyMARC seedling—Penn State]
- Developing novel boron containing porous polymers with higher H₂ binding energy
- Designed and synthesized two new classes of microporous polymers that contain boron.

High-capacity Hydrogen Storage Materials via Mechanochemistry [Ames Laboratory]
- Prepare high hydrogen capacity silicon-based borohydrides through mechanochemical methods
- Demonstrated several new materials with reversibility for part of their total capacity

“Li₂SiS₂(BH₄)₂” desorption measurements

Accelerating development of improved hydrogen storage materials
FY2017 FOA Topic

- **Hydrogen Storage Materials Discovery (HyMARC)**
 - innovative, high-risk, high-payoff concepts for hydrogen storage materials
 - project teams will be integrated into HyMARC as individual projects
 - phase I Go/No-Go milestone must provide confidence that the proposed concept has reasonable potential to result in a hydrogen storage material capable of meeting automotive performance requirements

- **Areas of interest:**
 - novel, advanced **onboard-rechargeable** hydrogen storage materials
 - physi- and chemisorption materials acceptable

- Only Phase I effort will be supported until Go/No-Go criteria is met, additional support will be contingent on meeting criteria
Accomplishments - Project Highlights

Computational Screening of MOFs with High Volumetric Density [U. Michigan]
- Identifying high-performing MOF’s through screening of large structure databases
- Synthesized and tested several MOFs for their H₂ adsorption properties; IRMOF-20 and DUT-23(Co) both projected to surpass MOF-5 in system performance

- [Graphene-based carbon sorbents [Caltech]]
 - Design and synthesize porous graphene materials as high-capacity H₂ sorbents
 - Demonstrated progress in preparing high-surface area carbons and inserting metal atoms to achieve higher heats of adsorption

- [SEM of high surface area graphene prepared from graphene oxide]

Developing improved adsorbent storage materials
Low-cost methods for α-alane production [SRNL, Greenway; Ardica, SRI]

- Developing and demonstrating low-cost processes for scale-up of alane (AlH_3) preparation
- Demonstrated improved crystallization and passivation process to produce high-purity, stable α–alane from chemical synthesis in batches of up to 200 grams (SRNL, Greenway)
- Demonstrated ability to yield α-alane from electrochemical synthesis, however further improvements are needed (Ardica, SRI)

XRD of crystalized α-alane from chemical (left) and electrochemical (right) syntheses

Crude Product for AlH_3-N^+PrMe_2 conversion to AlH_3 at 77 °C

Developing low-cost α-alane (AlH_3) production processes
Engineering
Accomplishments - Project Highlights

Maintenance and Enhancements for HSECoE Models [NREL/PNNL/SRNL]

- Collaborative effort to maintain, update and enhance system models developed under HSECoE to provide a resource to hydrogen storage materials developers
- Posted models include metal hydride, chemical, and sorbent H₂ storage systems
- Improved framework utility for materials researchers through new isotherm fitting and estimator tools.

Online system models maintained and accessible to the research community
Accomplishments - Project Highlights

Materials-based H₂ Storage for UUV Applications [SRNL/US Navy/Ardica]

- Developing a materials-based H₂ storage system to extend UUV mission duration
- Preliminary analysis indicate ≥2 times longer mission capability over battery operation

Metal Hydride H₂ Storage for Forklift Applications [Hawaii H₂ Carriers/SRNL]

- **Small Business Voucher** project to demonstrate MHHS performance on a forklift under realistic conditions and its fast fill capabilities; perform preliminary DFMA analysis
- System originally designed and built under a SBIR program

Leveraging HSECoE models and capabilities for high-value applications
Analysis
Accomplishments – Project Highlights

Hydrogen Storage System Performance [ANL] and Cost Analyses [SA/PNNL/ANL]

- Analyses are carried out to estimate system performance and cost of various technologies to help identify focus areas for the Program and to gauge technology development progress
- Cryo-compressed H₂ storage systems were evaluated for heavy duty fleet (bus) applications
- 500 bar, 40 kg H₂ capacity systems projected to be able to achieve 7.3 wt.% and 43 g/L storage densities with a cost of $15/kWh

Analysis of a 40 kg H₂ capacity, 500 bar cryo-compressed system for bus applications

Weight breakdown

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite</td>
<td>48%</td>
</tr>
<tr>
<td>Liner</td>
<td>25%</td>
</tr>
<tr>
<td>Shell</td>
<td>10%</td>
</tr>
<tr>
<td>H₂</td>
<td>8%</td>
</tr>
<tr>
<td>BOP</td>
<td>9%</td>
</tr>
<tr>
<td>MLVSI</td>
<td><1%</td>
</tr>
</tbody>
</table>

Cost Breakdown @ 5000/yr

$19,907/System @ $14.93/kWh

- BOP: 42%
- Liner: 6%
- Insulation: 8%
- Other mfg. steps: 10%
- Composites and Fiber Winding: 34%
Collaborations

INTERNATIONAL ACTIVITIES
• IEA HIA Task 32 Hydrogen-based Energy Storage

DOE – EERE - FCTO
Hydrogen Storage Applied R&D
• Physical Storage
• Fiber Composites
• Materials-based Storage
• System Engineering
• Testing and Analysis

INDUSTRY
• U.S. DRIVE
 Tech teams:
 ➢ H₂ Storage
 ➢ H₂ Delivery
 ➢ Codes & Standards
 ➢ Fuel Cells
 ➢ Fuel Pathways
 ➢ Vehicle Systems

TECHNOLOGY VALIDATION

National Collaborations (inter- and intra-agency efforts)

Collaborating and leveraging of national and international activities
Summary

• **Physical Storage**
 - Focus is on developing technologies to lower the cost of 700 bar systems
 - On-going projects on alternative materials and manufacturing processes
 - Conformable tank designs may provide improved packaging onboard vehicles
 - FOA topic on low-cost, alternative precursors for high-strength carbon fiber

• **Materials-based Storage**
 - Focus is to accelerate development of H$_2$ storage materials with targeted properties
 - HyMARC core team performing foundational research to develop computational tools
 - Rechargeable metal hydrides and hydrogen sorbents are primary materials areas
 - First round of seedling projects underway and FOA topic to select second round
 - Engineering activities leverage prior work to meet needs of high-value applications

<table>
<thead>
<tr>
<th>FY 2017</th>
<th>FY 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyMARC team to prepare sorbent strategy prioritization</td>
<td>First round of seedlings have go/no-go decisions</td>
</tr>
<tr>
<td>First round of seedlings working with HyMARC</td>
<td>Second round of seedlings working with HyMARC</td>
</tr>
<tr>
<td>Second round of seedlings to be selected</td>
<td>Low-cost high-strength CF precursor projects up and running</td>
</tr>
<tr>
<td>Low-cost high-strength CF precursor projects to be selected</td>
<td></td>
</tr>
</tbody>
</table>
Contacts – H₂ Storage Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ned Stetson</td>
<td>Program Manager</td>
<td>202-586-9995</td>
<td>ned.stetson@ee.doe.gov</td>
</tr>
<tr>
<td>Jesse Adams</td>
<td></td>
<td>720-356-1421</td>
<td>jesse.adams@ee.doe.gov</td>
</tr>
<tr>
<td>Grace Ordaz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Now retired and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>enjoying life after DOE!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katie Randolph</td>
<td></td>
<td>720-356-1759</td>
<td>katie.randolph@ee.doe.gov</td>
</tr>
<tr>
<td>Bahman Habibzadeh</td>
<td></td>
<td>202-287-1657</td>
<td>bahman.habibzadeh@ee.doe.gov</td>
</tr>
<tr>
<td>Zeric Hulvey</td>
<td>ORISE Fellow</td>
<td>202-586-1570</td>
<td>zeric.hulvey@hq.doe.gov</td>
</tr>
<tr>
<td>John Gangloff</td>
<td>ORISE Fellow</td>
<td>202-586-7009</td>
<td>john.gangloff@ee.doe.gov</td>
</tr>
<tr>
<td>Vanessa Trejos</td>
<td>Support contractor</td>
<td>202-586-5153</td>
<td>vanessa.trejos@ee.doe.gov</td>
</tr>
<tr>
<td>Chris Werth</td>
<td>Support contractor</td>
<td>240-562-1434</td>
<td>chris.werth@ee.doe.gov</td>
</tr>
</tbody>
</table>

BACK UP
HyMARC: Accelerating the discovery of breakthrough H$_2$ storage materials

HyMARC provides **capabilities** and **foundational understanding** of phenomena governing thermodynamics and kinetics for the development of solid-state hydrogen storage materials.

HyMARC delivers **community tools and capabilities:**
- **Computational models and databases** for high-throughput materials screening
- **New characterization tools and methods** (surface, bulk, soft X-ray, synchrotron)
- **Tailorable synthetic platforms** for probing nanoscale phenomena

Website: hymarc.org
Baseline system projections based on single tank design

Lowest cost, but most difficult to package onboard a vehicle
All current commercial FCEVs have dual tank designs.

Higher cost, but most easier to package onboard a vehicle.