Developing A Novel Hydrogen Sponge Polymer with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage

Mike Chung, Changwoo Nam, Houxiang Li, Hannah Pohlmann

Department of Materials Science and Engineering
The Pennsylvania State University

DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting
Washington, D.C., June 5-9, 2017

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start date: 10/1/2016
- Project end date: 9/30/2019
- % complete: 25%

Budget
- Total project funding: $887,266
 - DOE share: $682,715
 - Penn State share: $204,551
- Funding for FY2016-17: $250,000
- Go/no-Go decision: Dec. 2017

Barriers
- System weight & volume
- System cost, efficiency, durability
- Charging/discharging rates
- Suitable H₂ binding energy
- High polymer surface area

Partners
- HyMARC consortium
 - Sandia National Lab.
 - Lawrence Livermore National Lab.
 - Lawrence Berkeley National Lab.
Research Objectives

- New H₂ sponge (microporous polymer) that can simultaneously exhibit an H₂ binding energy (ΔH) 15-25 kJ/mol, a specific surface area SSA>4000 m²/g, and a material density >0.6 g/cm³.
- Design, synthesis, and evaluation of a new class of B-containing polymers with specific B-moieties and repeating microporous morphology.
- Molecular simulation and advanced structural characterization to support scientific understanding and polymer materials development.

Potential Benefits and the Impact on Technology

- Polymer morphology, free volume, and surface properties can be controlled at molecular level.
- Polymer can be produced in large-scale with low cost, good mechanical properties, and long term stability.
- If successful, this H₂ sponge can achieve gravimetric capacity of 5.5 wt% H₂ and volumetric capacity of 40g H₂/L @ ambient temperature under mild pressure (20-100 bar).
Relevance: 2020 DOE onboard H_2 storage targets

<table>
<thead>
<tr>
<th>System</th>
<th>Temp. (°C)</th>
<th>Gravimetric capacity (wt%)</th>
<th>Volumetric capacity (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 Bar Compressed H_2 system</td>
<td>Ambient Temp</td>
<td>~4.5</td>
<td>~25</td>
</tr>
<tr>
<td>DOE 2020 targets</td>
<td>Ambient (-40/60)</td>
<td>5.5 (1.8kWh/kg)</td>
<td>40 (1.3 kWh/L)</td>
</tr>
</tbody>
</table>

- Lower pressure operation = less cost at the station
- Fast hydrogen refill (5 kg in 3 to 5 minutes)
- Delivery pressure to fuel cell system (5-12 bar)
- Nominal thermal-management during refueling
- High efficiency (90%)
- Robotic and Durable (1500 cycles)
- Scalable and Low cost
Relevance: Three H_2 storage materials

Physical approach

MOF-210
- SSA: 6240 m2/g
- ΔH: <10 KJ/mol
- Density: 0.25 g/cm3
- Pore size: 2-5 nm
- Pore volume: 3.6 cm3/g

C Nanohorn
- SSA: <2000 m2/g
- ΔH: <10 KJ/mol
- Density: 0.75 g/cm3
- Pore size: 1-3.6 nm

Chemical approach

- Metal Hydrides: Mg(BH$_4$)$_2$(NH$_3$)$_2$
- Chemical Hydrides: Mg(BH$_4$)$_2$, Ca(BH$_4$)$_2$, LiBH$_4$/MgH$_2$, LiNH$_2$/MgH$_2$, MgH$_2$

H_2 Storage Capacity vs. H_2 Sorption Temperature (°C)

- MOF-210
- MOF-177
- C aerogel
- MOF-74

H_2 Desorption Temperature (°C)

- <10 KJ/mol
- 15-25 KJ/mol
- >30 KJ/mol
Relevance: Porous organic polymer networks

Qiu and Zhu at al. Angew Chem Int Ed 2009, 48, 9457

![PAF-1](image)

PAF-1
- BET: 6540 m²/g
- H₂ uptake: 7 wt% Total (48 bar/77K)
- Density: 0.315 g/cm³

![PPN-4](image)

PPN-4
- BET: 6461 m²/g
- H₂ uptake: 8.34 wt% Total (55 bar/77K)
- ΔH ~4 kJ/mol

- **Porous Polymer Network (PPN) can offer high surface area (>4000 m²/g)**
- **Polymers also offer good mechanical and thermal stability**
- **But low H₂ binding energy (<10 kJ/mol)**
Relevance: Optimal sorbent material

Binding Energy

- Bhatia and Myers 2006
- dotted lines $\Delta S = -10R$
- solid lines $\Delta S = -8R$

![Graph showing binding energy vs pressure at 298K, 223K, and 77K](image)

- ΔH: 15-25 kJ/mol

Bulk Density

- Argonne National Laboratory
- DOE target

![Graph showing bulk density vs material density and volumetric capacity](image)

- Bulk material density: $>0.6 \text{ g/cm}^3$

Practical H_2 storage at ambient temperature and pressure <100 bar
Relevance: Increase H_2 binding energy

NREL led H_2 Sorption Center of Excellence (HSCoE) 2005-10
Relevance: Synthesis of BC$_x$ by Precursors

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Pyrolysis temp. (°C)</th>
<th>BC$_x$ (B wt%)</th>
<th>d-Spacing (nm)</th>
<th>La (nm)</th>
<th>Lc (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>600</td>
<td>BC$_{12}$ (7.7)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A-2</td>
<td>800</td>
<td>BC$_{13}$ (6.4)</td>
<td>0.367</td>
<td>3.70</td>
<td>1.10</td>
</tr>
<tr>
<td>A-3</td>
<td>1100</td>
<td>BC$_{21}$ (4.2)</td>
<td>0.356</td>
<td>3.73</td>
<td>1.23</td>
</tr>
<tr>
<td>A-4</td>
<td>1400</td>
<td>BC$_{25}$ (3.5)</td>
<td>0.353</td>
<td>4.87</td>
<td>1.61</td>
</tr>
<tr>
<td>A-5</td>
<td>1500</td>
<td>BC$_{28}$ (2.6)</td>
<td>0.347</td>
<td>5.04</td>
<td>1.64</td>
</tr>
<tr>
<td>A-6</td>
<td>1800</td>
<td>BC$_{40}$ (2.2)</td>
<td>0.339</td>
<td>6.04</td>
<td>2.77</td>
</tr>
</tbody>
</table>

- **Pyrolysis temp. (°C)**: Temperatures at which pyrolysis was performed.
- **BC$_x$ (B wt%)**: Weight percentage of boron in the synthesized BC$_x$.
- **d-Spacing (nm)**: Distance between layers in nanometers.
- **La (nm)**: Length in nanometers.
- **Lc (nm)**: Width in nanometers.

Images and diagrams show the synthesis process and resulting materials.

References:

1. Carbon 1996, 34, 595
2. Carbon 1996, 34, 1181
3. Carbon 1997, 35, 641
6. Carbon 2010, 48, 2526
Relevance: H_2 adsorption isotherms in BC_{12}

<table>
<thead>
<tr>
<th>Run no.</th>
<th>N$_2$ sorption at 77 K</th>
<th>CO$_2$ sorption at 273 K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surface area (m2/g)</td>
<td>Pore vol. (cm3/g)</td>
</tr>
<tr>
<td>A-1</td>
<td>780</td>
<td>0.38 (0.43)*</td>
</tr>
</tbody>
</table>

Volumetric measurement

Gravimetric measurement

1H NMR (H$_2$ at 295 K and 10 Mpa)

Clausius-Clapeyron equation estimates the initial isosteric heat of adsorption is 12.47 kJ/mol and maintains a high level (10.8 kJ/mol for 0.62 wt % H$_2$ uptake).

Peaks B and C are associated with H$_2$ in two different types of confined regions. The Langmuir fit of peak C isotherm yields a H$_2$ binding energy of 11.4 kJ/mol.

Carbon 2010, 48, 2526-2537

JACS 2008, 130, 6668

Approach: New sorbent targets

<table>
<thead>
<tr>
<th>System</th>
<th>SSA (m²/g)</th>
<th>Density (g/cm³)</th>
<th>Pore volume (cm³/g)</th>
<th>H₂ binding energy (kJ/mol)</th>
<th>Pres./Temp. (bar)/(K)</th>
<th>Gravimetric capacity (wt%)</th>
<th>Volumetric capacity (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOF 210</td>
<td>6240</td>
<td>0.25</td>
<td>3.6</td>
<td><10</td>
<td>60/77</td>
<td>8.6</td>
<td>24</td>
</tr>
<tr>
<td>Porous Polymer</td>
<td>>4000</td>
<td><1.0</td>
<td><10</td>
<td>90/77</td>
<td>>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous BC₁₂</td>
<td>1500</td>
<td>0.98</td>
<td>0.43</td>
<td>10-12</td>
<td>60/77</td>
<td>3.3</td>
<td>34</td>
</tr>
<tr>
<td>DOE and B-polymer targets</td>
<td>>4000</td>
<td>>0.6</td>
<td><0.7</td>
<td>15-25</td>
<td><100 / 273</td>
<td>5.5</td>
<td>40</td>
</tr>
</tbody>
</table>

New sorbent shall simultaneously exhibit H₂ binding energy 15-25 kJ/mol, SSA >4000 m²/g, material density >0.7 g/cm³.
Approach: Two New B-containing Polymer Networks

Condensation Mechanism

(A)

Addition Mechanism

(B)

R Spacers:

Organoborane moiety with suitable acidity (correlative 11B chemical shift to H$_2$ binding energy)
Accomplishments - Condensation mechanism; 2,6-divinyl-9,10-methoxyboraanthracene monomer

Incremental Surface Area vs. Pore width (C-A)

Surface area and micro-pore volume

Bulk density = 0.95 g/cm³

(A)
Accomplishments: Addition mechanism; B-containing poly(butylstyrene) (B-PBS)

Chemical Reaction

\[
\text{Syndio-specific metallocene catalyst} \rightarrow \text{B-PBS}
\]

Thermal Stability

- \(200 \, ^\circ\text{C}\)
- \(230 \, ^\circ\text{C}\)
- \(270 \, ^\circ\text{C}\)
- \(>300 \, ^\circ\text{C}\)
Accomplishments: FTIR spectrum of B-PBS polymer
Accomplishments: MAS 11B NMR spectrum of B-PBS polymer

Solid state Boron NMR

MAS 11B NMR spectrum of B-PBS polymer
Accomplishments: Pore Structure of B-PBS polymers

B-PBS-300
- Surface Area: 800 m²/g
- Micropore Volume: 0.48 cm³/g
- Density: 1 g/cm³

B-PBS-230
- Surface Area: 1,150 m²/g
- Micropore Volume: 0.75 cm³/g
- Density: 1 g/cm³
Accomplishments: H_2 Adsorption Isotherm

H_2 adsorption was measured at Sandia National Labs (Dr. Vitalie Stavila)

- B-PBS-230
 - $1,150 \text{ m}^2/\text{g}$

At:
- $0 \degree \text{C}$
- $25 \degree \text{C}$

H_2 adsorption was measured at Sandia National Labs (Dr. Vitalie Stavila)
Summary

• Design and Synthesis of two new classes of microporous B-containing polymers.

• Structure characterization by FTIR, 1H, 11B, and 13C NMR spectroscopies, SEM, micropores and surface area.

• Collaboration with HyMARC core team for H$_2$ adsorption isotherm measurements.
Proposed future work

- Broadening B-polymer compositions
- Refining reaction conditions to control microporous morphology
- Titan TEM-EDS and FE-SEM electron microscopies to observe the microporous morphology with the elemental map.
- Correlating B chemical shifts (B-acidity) to H₂ binding energy (ΔH) and sorption-desorption cycles.
Collaboration with HyMARC / HySCORE teams

<table>
<thead>
<tr>
<th>Partner</th>
<th>Project Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandia National Lab.</td>
<td>H₂ adsorption isotherm measurements up to 200 bar H₂ pressure and various temperatures, also the stability tests up to 1000 bar H₂ pressure and various temperatures.</td>
</tr>
<tr>
<td>Lawrence Livermore National Lab.</td>
<td>Computer simulation of B-polymer networks to understand morphology (pore size, pore volume, surface area, density, etc.) and surface energy for H₂ adsorption</td>
</tr>
<tr>
<td>National Renewable Energy Lab.</td>
<td>H₂ adsorption isotherm measurements / Verification of our experimental results</td>
</tr>
</tbody>
</table>
Future Work (cont.)

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Key Milestones & Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/1/2016</td>
<td>• Synthesis routes to prepare B-monomers, B-polymers, and the corresponding B-networks.</td>
</tr>
<tr>
<td></td>
<td>• Collaborating with HyMARC to examine B-network structures, SSA, H(_2) binding energy and adsorption capacity.</td>
</tr>
<tr>
<td>12/31/2017</td>
<td>• A B-polymer network with SSA>3000 m(^2)/g, an average H(2) binding energy (E{\text{ads}})>15 kJ/mol, H(_2) adsorption capacity 5 wt% excess (Go/No-Go criteria).</td>
</tr>
<tr>
<td>12/31/2017</td>
<td>Go/No-Go decision</td>
</tr>
<tr>
<td>Phase 2</td>
<td>• Expanding B-polymer Networks by varying R spacer between B-moieties.</td>
</tr>
<tr>
<td>1/1/2018</td>
<td>• Collaborating with HyMARC to understand free volume and H(_2) binding energy.</td>
</tr>
<tr>
<td>9/30/2019</td>
<td>• Understanding the structure-property relationship by a systematical study.</td>
</tr>
<tr>
<td></td>
<td>• Achieving the DOE 2020 H(_2) Storage Target.</td>
</tr>
</tbody>
</table>