

Low Temperature NH₃ Cracking Membrane Reactor for H₂ Generation PI: Zhong Tang, PhD, Bettergy Corp. Co-PI: Gang Wu, PhD, SUNY at Buffalo

Project Vision

- Develop H₂ separation membrane and novel catalyst for low temperature NH₃ cracking
- Integrate catalyst and membrane into a membrane reactor system
- Build safe, low-cost, on-demand H₂ refueling stations

Project Impact

- > Reduce cost barriers for H_2 refueling stations
- Reduce GHG emissions
- Maintain US leadership in \$15B fuel cell market

\$1.5M

36 mo.

Fed. funding:

Length:

Innovation and Objectives

Innovation

• Innovative H₂ separation membrane and novel catalyst for **low temperature** NH₃ cracking (AC-MR)

• Integration of catalyst and membrane into a membrane reactor system

• Enables small on-demand H₂ refueling stations

Technical Objectives

Phase I -- Confirm the feasibility of **low** temperature AC-MR system

Phase II -- Demonstrate prototype AC-MR producing 10 L H₂/min

Phase IIS -- Establish partnership to commercialize AC-MR technology

Tech-to-Market Strategy

- Partnership with NYSERDA, H₂ generation and supply companies, fuel cell and FCEV manufacturers
- The first market: existing gas stations, H₂ refueling stations
- License and/or co-development

Innovation and Objectives

Project History

- Bettergy Corp. holds proprietary technologies in zeolite membrane separation and MR field
- SUNY—Buffalo has strong expertise in catalyst synthesis and characterization.

Anticipated Challenges

Technical risks	Mitigation
Heat management	Flameless combustion of retentate gas to provide heat
Membrane sealing	Modularized tubular design

Proposed Targets		
Metric	State of the art	Proposed
Temperature	700-1100 °C	<450 °C
Conversion	99%	>99%
Energy efficiency	~60	>80%
Cost per capacity	12,500 per\$/kg/day	8,141 per\$/kg/day
Lifetime	2-5 year	>10 year

Desirable Partnerships

- NYSERDA supporting green energy in New York State
- H₂ generation equipment manufacturers/suppliers
- Fuel cell manufacturers
- FCEV manufacturers
- Fuel station developers and owners

