

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Fuel Cells R&D Overview

Dr. Dimitrios Papageorgopoulos – Fuel Cell Technologies Office

2018 Annual Merit Review and Peer Evaluation Meeting

June 13 – 15, 2018

Fuel Cells: Pillar of H₂ & Fuel Cell Technologies R&D

Early-stage applied R&D and innovation in hydrogen and <u>fuel cell</u> <u>technologies</u> leading to:

- Energy security
- Resiliency
- Affordability
- Strong domestic economy

Objectives and Targets

1. R&D to enable a direct hydrogen fuel cell power system for transportation competitive with incumbent and alternative technologies on a lifecycle cost basis

2. R&D of efficient, resilient and affordable fuel cell systems for distributed power generation (primary, back up, CHP)

3. Enable fuel cell technology advancements for cross-cutting applications (e.g. APUs, rail, material handling)

Fuel Cells MYRD&D Plan

http://energy.gov/eere/fuelcells/downloads/fuel cell technologies office multi year research development and 22

Market-driven targets allow fuel cells to compete with incumbent and advanced alternative technologies

Challenges and Strategy

Durability <u>and</u> Cost are the primary challenges to fuel cell commercialization and must be met concurrently

Early-stage materials and components R&D to achieve low-cost, high-performance fuel cell systems

Improvements in multiple components are required to meet 2025 targets R&D portfolio focused on PEMFCs, but also includes longer-term technologies (e.g. AEMFCs) & higher temp fuel cells (e.g. MCFCs) for stationary applications

Challenges and Strategy

Early-stage R&D generates knowledge to foster significant fuel cell technology advances

Strategic Analysis Guides Fuel Cell R&D Priorities

* PGM elimination mitigates US dependence on precious metal imports

Fuel Cell Cost Improvements

Fuel Cell Cost Status

- **\$50/kW*** for 100,000 units/year
- **\$45/kW*** for 500,000 units/year
- **\$180/kW*** for 1,000 units/year
- \$230/kW⁺ for currently commercialized on-road technology at 1,000 units/year

60% cost reduction in the last 10 years

* SA Inc., bottom-up analysis of model system manufacturing cost, high volume manufacturing with next-gen lab technology

† SA Inc., bottom-up analysis of model system based on commercially available FCEVs

https://www.hydrogen.energy.gov/pdfs/17007_fuel_cell_system_cost_2017.pdf

Fuel Cell R&D Funding

Fuel Cell R&D Portfolio

Funding distribution of all FOA, LAB, SBIR/STTR projects

including number of current projects and % of portfolio funding

Current emphasis is on early stage applied R&D in the key areas of fuel cell components and materials, including catalysts and membranes, as well as fuel cell performance and durability

ElectroCat (Electrocatalysis Consortium)

Goal		Objectives	
ElectroCat CELECTROCAT CELECTROCATALYSIS CONSORTIUM Accelerate the deployment of replacing platinum-based can be a served as a ser	talysts with platinum	 Streamline access to unique PGM-free catalyst synthesis and characterization to across national labs Develop missing strategic capabilities Curate a public database of information 	ols
Core Lab T	eam	Accomplishments and Next Steps	
	<text><image/><image/><text></text></text>	 Updated capability set Demonstrated significant progress in (a) catalyst development, (b) active-site characterization, and (c) high-throughput PGM-free catalyst modeling and synthesis Partnered with 4 newly awarded FOA projects Add partners through FY18 FOA 	
U.S. DEPARTMENT OF ENERGY OFFICE OF ENER	GY EFFICIENCY & RENEWABLE ENERGY	FUEL CELL TECHNOLOGIES OFFICE	10

Demonstrated MEA performance of 21 mA/cm² at 0.9 V_{IR-free} with H_2/O_2 , a 30% improvement over 2016 baseline

Accomplishment: High-Throughput (HT) Synthesis & Characterization

HT materials with potentially > 5× **ORR** activity of baseline compositions identified in HT hydrodynamic screening

ElectroCat FOA Projects Added in 2017

Carnegie Mellon University Advanced PGM-free Cathode Engineering for High Power Density and Durability Thick Cathode Architectures for Robust Transport MOF-derived Fe-N-C Catalyst Engineered hydrophobicity Carnegie Mellon Universit GINE Fe-doped ZIF-Hydrophobic support layers Fluoropolymer iCVD **Hierarchical Size** Ionomers for PGM-free Optimization 2 nm High active sit PFSA density map Characterization, Simulation Particle & interfaces Cathode/MEA PFIA: Multi-acid \mathbb{F}_2 side chain CF2-SO2-N-SO2(CF2)SO3H

Greenway, LLC

PGM-free Engineered Framework Nano-Structure Catalysts

Giner Inc

Durable Mn-based PGM-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells

Pacific Northwest National Lab

Highly Active and Durable PGM-free ORR Electrocatalysts through the Synergy of Active Sites 2H⁺+ O₂ H₂O₂ H₂O

Accomplishment: Low Pt-loading alloy catalysts

PtCo/HSC-f: exceeds 8 kW/g_{PGM} target while demonstrating durable performance at high current density

Equivalent performance to current on-road technology with 5x less Pt

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

FC-PAD: Fuel Cell Performance and Durability

Approach	Objectives	
Couple national lab capabilities with funding opportunity announcements (FOAs) for an influx of innovative ideas and research	 Improve component stability and durability Improve cell performance with optimized transport Develop new diagnostics, characterization tools, and models 	
Consortium fosters sustained capabilities and collaborations	Structured across six component and cross-cutting thrusts	
<section-header><section-header><image/><image/><image/><image/><image/><image/><image/><image/></section-header></section-header>	 Component Characterization Component Characterization Component Characterization Conductional Science 	
Expands the body of knowledge		
Example: JES Focus Issue on PEMFC Durability www.fcpad.org	Lead: Rod Borup (LANL) Deputy Lead: Adam Z. Weber (LBNL)	
U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE E	INERGY FUEL CELL TECHNOLOGIES OFFICE 15	

Accomplishments: FC-PAD

Novel catalyst layer architectures

Improved catalyst conditioning

Mesostructured electrodes with vertically aligned ionomer channels allow use of 50% less ionomer for H⁺ transport

Nanowire

Array

Conditioning protocol developed demonstrating up to 2-3x difference in mass activity between initial and peak i_m for several commercial Pt and PtCo catalysts

Accomplishments: FC-PAD

Characterization tools used to build catalyst layer microstructural model

Allows for unprecedented, comprehensive view of catalyst layer micro- and nanostructure including heterogeneities across scales

Secondary pore structure: nano-CT

C particle size: TEM and USAXS

Pt particle size: TEM and USAXS

Accomplishment: Low-PGM Electrospun Catalyst Layers

Electrospun catalyst layers using PtCo catalyst with carrier ionomer improve low humidity performance

- >3x compared to project spray coating baseline at 40% RH
- Max power exceeds 1100 mW/cm² at 0.1 mg_{Pt}/cm² cathode loading


```
\label{eq:meansatz} \begin{array}{l} \underline{\textbf{MEA details}}: 80^{\circ}\text{C}, 200 \text{ kPa (abs.)} \\ \hline \textbf{Cathode}: 0.1 \text{ mg}_{\text{Pt}}/\text{cm}^2 \\ \hline \textbf{Anode}: 0.1 \text{ mg}_{\text{Pt}}/\text{cm}^2 \text{ (Espun), J-M 0.4 mg}_{\text{Pt}}/\text{cm}^2 \text{ (Spray)} \\ \hline \textbf{Membrane}: \text{NR 211, GDL}: \text{SGL 29 BC} \end{array}
```

	100% RH		40% RH			
Sample	Max Power (mW/cm²)	Power at 0.65 V (mW/cm²)	HFR (mΩ-cm²)	Max Power (mW/cm²)	Power at 0.65 V (mW/cm²)	HFR (mΩ-cm²)
PtCo Spray	652	544	70	315	85	208
Gen-1 PtCo Espun	759	661	76	590	250	219
Gen-2 PtCo Espun	1132	998	56	967	488	120

P. Pintauro, et al., Vanderbilt

Accomplishment: Intermediate Temperature Fuel Cell Membranes

- Peak power density exceeds 1100 mW/cm² at 180°C (H₂/O₂)
- > 20 × better water tolerance than established PBI system* to allow low-T operation

^{*}measured at P_{H2O} = 19.9 kPa, 80°C

Y. S. Kim, et al., LANL

Accomplishment: Direct Dimethyl Ether Fuel Cell

- Close to 2x increase in anode specific activity compared to methanol
- Ten-fold decrease in crossover as compared to methanol

Key Performance Indicator this period	Current DMFC	Status DDMEFC	Target DDMEFC
Total precious metal loading	5 mg _{PGM} /cm ²	4.5 mg _{PGM} /cm ²	3 mg _{PGM} /cm ²
Anode mass-specific activity	50 A/g measured at 0.5 V(*)	93.8 A/g measured at 0.5 V (PtRu)	75 A/g measured at 0.5 V
Maximum Power	160 mW/cm ²	135 mW/cm ² (***)	270 mW/cm ²
Crossover	60-120 mA/cm ² (**)	6 mA/cm ²	< DMFC

(*) By comparison, LT direct DME FC obtained 25 A/g measured at 0.5 V with PtRu.

(**) 60 mA/cm² with 0.5 M MeOH, 80 °C, Nafion[®] 117; 120 mA/cm² with 1.0M MeOH.

(***) 2.23mg/cm² PtRu anode, 2.3mg/cm² Pt-alloy cathode

E. De Castro, et al., Advent

Reversible Fuel Cells (RFCs)

Research Priorities Include:

- Bifunctional catalysts
- Advanced membranes
- Electrode optimization including effective water management
- Corrosion protection schemes

Viability and cost-competitiveness of RFCs require foundational R&D to improve roundtrip efficiency and meet long-term targets less than \$1250/kW capital cost and cycle life of 5,000 cycles

https://www.energy.gov/sites/prod/files/2017/03/f34/quadrennial-technology-review-2015_1.pdf. (Chapter 3, Table 3.C.2)

R&D to focus on innovative concepts for reversible fuel cells to provide easily dispatchable power and flexibility to address resiliency and grid/microgrid needs

 Applied Early-Stage R&D addresses cost reduction, performance and durability enhancement of materials and stack components, including catalysts and membranes

• ElectroCat coordinates with newly awarded FOA projects to expedite the development of PGM-free catalysts and electrodes

• **FC-PAD**, including industry/university partners, continues to expand the knowledge base to advance fuel cell performance and durability

Summary of Upcoming Activities & Milestones

- Fuel cells to enable energy storage and resiliency*
- Innovative R&D projects through FY18 FOA and FY19 Lab Call
- Lab-led membrane R&D project working group to coordinate efforts and leverage activities with other agencies
- Technical milestones:
 - Demonstrate 25 mA cm⁻² at 0.9 V (iR-corrected) in an H₂-O₂ fuel cell (4Q 2018)
 - Demonstrate 29 mA cm⁻² at 0.9 V (iR-corrected) in an H₂-O₂ fuel cell (4Q 2019)

*Under 'Beyond Batteries' crosscut effort (FY 2019 Budget Request)

Collaborations

Fuel Cell Program Contacts

Questions?

Back Up Slides

R&D Benefits Various Fuel Cell Market Sectors

Potential Cost Reduction Strategy

PGM-free catalysts and advancements in key components are key research goals for meeting DOE's ultimate \$30/kW target

Accomplishments: ElectroCat

11

Four-fold H ₂ -air performance increase for ZIF-derived catalyst	Molecular probe for quantifying active sites	
ZIF-based Fe-N-C catalyst with no Fe-rich nanoparticles detected Fe present in N-coordinated FeN _x sites	 NO adsorbs on surface Fe sites from a nitrite solution Count surface Fe sites by reductive stripping scan Developed library of adsorption energy of probes/poisons to Fe-N_x site structures hosted in 	
H ₂ -air fuel cell performance at 0.80 V, from 9 mA cm ⁻² to 36 mA cm⁻² since 2017 AMR	graphene and zig-zag (ZZ) edges	
0.87 Fitting of XANES 0.83 0.81 0.79	Molecular probe (MP) poisoning Reductive MP stripping $\begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & &$	
0.75 0.85 0.95 1.05 <u>FeN₄ Mole Fraction</u> 1.0 0	Active site identification and high-throughput catalyst discovery	
0.8 0.8 0.6 0.6 0.4 0.00 0.4 0.4	 ORR activity of intermediate Fe-content catalyst correlates with FeN4 content Catalyst identified with 5X ORR activity versus baseline 	
0.0 0.2 0.4 0.6 0.8 1.0 Current density (A cm ⁻²)	Composition $XANES$ White Line α Fe ³⁺ N ₄ Content	
U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	FUEL CELL TECHNOLOGIES OFFICE 30	

Accomplishments: HT Synthesis & Characterization

