Highly-Accessible Catalysts for Durable High-Power Performance

Anusorn Kongkanand (PI)
General Motors, Fuel Cell Activities

June 14, 2018
Overview

Timeline
- Project start date: 1 Apr 2016
- Project end date: 30 Jun 2019
- Percent complete: 47%

Budget
- Total Funding Spent as of 3/31/18: $1.8M
- Total DOE Project Value: $4.59M
- Cost Share: 21.7%

Barriers
- B. Cost
 - Decrease amount of precious metals.
- A. Durability
 - Improve kinetic activity and high current density performance
- C. Performance
 - Achieve and maintain high current densities at acceptably-high voltages

Partners
- Subcontractors:
 - 3M Company
 - Carnegie Mellon University
 - Cornell University
 - Drexel University
 - NREL
- Project lead: GM
Challenge: Local Transport Losses

- FC087 Dealloyed PtCo and PtNi meet Catalyst Targets (activity and durability) but not MEA Targets (high current density, HCD).
- At HCD, high flux of O_2 and proton per a given Pt area causes large voltage loss on low-Pt cathode.
- The ‘local transport resistance’ dominates the mass transport related loss (purple).
- Likely a sum of H^+ and O_2 resistance at ionomer/Pt interface and in carbon micropores.
- Want to reduce apparent R^{Pt} from ~25 s/cm to <10 s/cm, or double the Pt ECSA.
Targets and Status

Objectives
- Reduce overall stack cost by improving high-current-density (HCD) performance adequate to meet DOE heat rejection and Pt-loading targets.
- Maintain high kinetic mass activities.
- Minimize catalyst HCD degradation.

Target Highlights
- 10-20% improvement in overall FC performance with HSC-en over previous generation (HSC-e).
- Meet durability target in *absolute* terms, but some narrowly miss in *percentage* loss.
- Excellent stability with ordered intermetallic PtCo.

Relevance:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>PtCo/KB 2016</th>
<th>PtCo/HSC-en ‡</th>
<th>PtCo/HSC-f †</th>
<th>Ordered-PtCo/KB 2018-3</th>
<th>DOE 2020 Target</th>
<th>Project Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM total loading (both electrodes)</td>
<td>mg/cm²</td>
<td>0.125</td>
<td>0.125</td>
<td>0.088</td>
<td>0.125</td>
<td><0.125</td>
<td>←</td>
</tr>
<tr>
<td>Mass activity @ 900 mV<sub>ir-free</sub></td>
<td>A/mg<sub>PGM</sub></td>
<td>0.62†</td>
<td>0.6†</td>
<td>0.7†</td>
<td>0.53†</td>
<td>>0.44</td>
<td>←</td>
</tr>
<tr>
<td>Loss in catalytic (mass) activity</td>
<td>% loss</td>
<td>30%</td>
<td>42%*</td>
<td>54%*</td>
<td>16%</td>
<td><40%</td>
<td>←</td>
</tr>
<tr>
<td>Performance at 0.8V (150kPa, 80°C)</td>
<td>A/cm²</td>
<td>0.304</td>
<td>0.363</td>
<td>0.382</td>
<td>0.301</td>
<td>>0.3</td>
<td>←</td>
</tr>
<tr>
<td>Power at rated power (150kPa, 94°C)</td>
<td>W/cm²</td>
<td>0.80</td>
<td>tbd</td>
<td>0.93</td>
<td>tbd</td>
<td>>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Power at rated power (250kPa, 94°C)</td>
<td>W/cm²</td>
<td>1.01</td>
<td>1.31</td>
<td>1.26</td>
<td>1.15</td>
<td>-</td>
<td>>1.1</td>
</tr>
<tr>
<td>PGM utilization (150kPa, 94°C)</td>
<td>kW/g<sub>PGM</sub></td>
<td>6.4</td>
<td>tbd</td>
<td>10.6</td>
<td>tbd</td>
<td>>8</td>
<td>←</td>
</tr>
<tr>
<td>PGM utilization (250kPa, 94°C)</td>
<td>kW/g<sub>PGM</sub></td>
<td>8.1</td>
<td>10.5</td>
<td>14.3</td>
<td>9.2</td>
<td>-</td>
<td>>9.1</td>
</tr>
<tr>
<td>Catalyst cycling (0.6-0.95V, 30k cycles)</td>
<td>mV loss at 0.8A/cm²</td>
<td>(24, 15)</td>
<td>(34, 23)*</td>
<td>(47, 32)*</td>
<td>(8, 5)</td>
<td><30</td>
<td>←</td>
</tr>
<tr>
<td>Support cycling (1.0-1.5V, 5k cycles)</td>
<td>mV loss at 1.5A/cm²</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>tbd</td>
<td><30</td>
<td>-</td>
</tr>
</tbody>
</table>

* The loss in catalytic activity is measured at 900 mV_{ir-free} and 30% is considered a general target.
* MA at 0.9VRHE in cathodic direction.
* HSC-en is an optimized and up-scale (20 g) of HSC-e.

Green: meet target
Red: not yet meet target
Black: NA

Must meet Q/ΔT < 1.45 or >0.67 V at 94°C (measured at 40, 100% RH)
Approach:

Work Focuses in the Past Year

- **New Carbon Supports**
 - Study local transport using MEA electrochemical diagnostics, microscopy, and simulation.
 - Understand support effects on durability.
 - Optimize PtCo on accessible carbon with emphasis on stability

- **Electrolyte-Pt Interfaces: Ionomer and Ionic Liquid**
 - Develop process to add ionic liquid in MEA and study its effect.
 - Identify new electrolyte-Pt interface affects fuel cell performance.

- **Ordered Intermetallic Alloys**
 - Use advanced in-situ techniques to optimize activity/stability vs Pt-particle-size growth

- **Effects of Co^{2+} and Ce^{3+}**
 - Validate cation performance model with in-situ visualization.
Milestones and Go/No Go

TASK 1 - Development of Highly-Accessible Pt Catalysts

Go/No-go criteria: >1.0 W/cm², >8 kW_{\text{rated}}/g_{Pt}, and Q/ΔT <1.7 with Pt/C

- Downselect carbon support, ionomer, ionic liquid: 70% 100%
- Measure the effect of leached Co²⁺ and Pt surface area: 80% 100%
- Develop dealloyed catalyst from ordered intermetallic alloy: 50% 100%
- Visualize carbon structure and Pt location on selected catalysts: 70% 100%
- Model baseline material: 80% 100%

TASK 2 - Development of Dealloyed Catalyst with Preferred Catalyst Design

Go/No-go criteria: >0.44 A/mg_{PGM}, <40% mass activity loss with preferred design

- Develop dealloyed catalyst on preferred support: 30% 80%
- Implement selected ionomer and ionic liquid with selected catalysts: 0% 60%
- Visualize fresh PtCo/C and post-AST Pt/C: 50% 90%
- Model PtCo/C before and after AST: 0% 70%

TASK 3 - Optimization for Durable HCD and LCD Performance

Milestone: >1.1 W/cm², >9.1 kW_{\text{rated}}/g_{Pt}, and Q/ΔT <1.45

- Identify root cause and improve durability and performance of PtCo/C: 0% 20%
- Evaluate effect of selected ionomer/IL on HCD and durability of improved PtCo catalyst: 0% 10%
- Integrate new catalyst design with other state-of-the-art FC components: 20% 20%
- Make available to DOE the improved catalyst in 50 cm² MEAs: 10% 10%
- Visualize and model improved catalyst: 0% 10%
The type of carbon support affects not only the transport properties of the catalyst layer but also the kinetic activity of the catalysts. Can achieve both good activity and transport with optimized carbon mesopores. Carbon morphology is very important but not easy to evaluate (due to its size, low-contrast, complex/non-uniform morphology).

3D LAADF STEM image of KetjenBlack

Fuel Cell Performance

- The type of carbon support affects not only the transport properties of the catalyst layer but also the kinetic activity of the catalysts.
- Can achieve both good activity and transport with optimized carbon mesopores.
- Carbon morphology is very important but not easy to evaluate (due to its size, low-contrast, complex/non-uniform morphology).
Local transport properties (O₂ and proton) correlate well with mesopores of 4-7 nm in size.

- Too large → ionomer intrudes into pores and poisons Pt activity
- Too small → O₂/proton transport is restricted

Appropriate pore geometry (opening size and pore depth) yields both good transport and activity.

† by limiting current, see JES (2012) 159, F831
‡ by CO stripping, see 2017 AMR or JES (2018), 165, F173
Accessible-porous carbons show larger *percentage* losses of ORR MA and ECSA than KB.

- In absolute term, end-of-test MA is better than 0.26 A/mg_{Pt} (or 40% loss from 0.44 A/mg_{Pt}).
- HCD performance (2 A/cm²) is better than baseline porous and solid carbons throughout the test.
- Improved stability of HSC-en over HSC-e is due to pore optimization and quality control.

* HSC-en is an optimized and up-scale (20 g) of HSC-e
† MA at 0.9 V_{RHE} measured in cathodic direction
‡ H_{2}/air, 94°C, 250 kPa_{abs}, 65% RH, stoich 1.5/2
Optimize Pt$_3$Co Ordering with in-situ Techniques

- Determine annealing parameters (temperature, time, cooling procedure) for best ordering & lattice contraction without excessive particle size growth.
- Cornell prepared 5 catalysts which were tested/being tested at GM. In parallel, GM also applies learnings to its own synthesis for faster scale up for MEA test.
Stabilization with Ordered Pt$_3$Co

Technical Accomplishment:

Stabilization with Ordered Pt$_3$Co

Degree of Ordering Measured by WAXS for multiple Cornell- and GM-made ordered Pt$_3$Co

- WAXS confirmed formation of ordered structure in the particle cores.
- Degree of ordering is very sensitive to particle size and annealing condition.

MEA AST of GM-made ordered Pt$_3$Co

- MEA tests showed improved stability for Cornell-made and GM-made ordered Pt$_3$Co/KB catalysts prepared by the same annealing procedure.
- Losses in ORR activity and ECSA, of an already-very-stable Pt$_3$Co/KB, were reduced in half.
- Very promising. Will apply on new carbons.
- No significant differences in the changes during AST of Pt/Co composition and Pt-shell thickness between inside and outside particles.
- Somewhat surprising that Co dissolution is similar, considering difference in electrolyte environment.
Modeling of oxygen and proton transport plus ORR at the catalyst scale to evaluate the effects of carbon support aggregate surface area, morphology, surface chemistry, and ionomer properties.

- Losses due to proton and O₂ transport in the internal pores are small with known physics and morphology. → agree with those observed in accessible porous carbons
- Sensitivity study shows significant voltage loss with lower O₂ diffusivity. → can occur in KetjenBlack. Need O₂ measurement (and method development) with appropriate materials to support assumption
- See Back-up slides for Achievements on ex-situ transport measurements.
Beneficial for future development to know how much of the local resistance is caused by proton and O₂.

Under relatively high humidity (>75% RH), where water can condense in carbon primary pores, proton transport loss in internal pores is negligible.

- Can support >0.13 A/cm²Pt (>6 A/cm²MEA for 0.1 mgPt/cm²)

Transport mechanism under dry condition still unknown.

Proton accessibility increases with Pt wt.% at lower RH.

- Likely because of increased condensed water due to changes in pore size and hydrophilicity from increased Pt particle concentration.
NREL confirms greatly improved local-O$_2$ transport with new porous carbons (18\rightarrow10 s/cm at 75% RH).

New carbons show less gas-pressure dependency and better low-temperature performance.

\Rightarrow characteristics of improved O$_2$ transport
Preliminary 5 cm² differential cell testing with 20 wt% Pt/Vu cathodes, 0.06 mgPt/cm² loading. I/C ratios were adjusted to give constant ionomer sulfonic acid concentrations.

Limiting current measurement shows lower local-Pt resistance. Preliminary fuel cell testing showed benefit at low O₂ partial pressure.

Learnings of traditional PFSAs (effects of EW, I/C) shared through FC-PAD projects.

New advanced 3M ionomers will be evaluated with PtCo candidates in the future.
By adding ionic liquid (IL) to the cathode after electrode coating, successfully confirmed performance benefit in MEA.

- Improvement was confirmed for Pt/V and PtCo/HSC. (up to 20-40 mV at 2.5 A/cm²)
- Have investigated 10 other combinations of IL, but MTBD-beti is still the best.
- NREL diagnostics confirmed that the improvement is primarily due to higher ORR activity.
- On porous carbon, IL also improves proton accessibility to internal Pt particles, thanks to its free anions.
- Have not observed loss of benefit after >1 weeks.
Understanding loss due to cations in the MEA is required for efficient fuel cell design and operation. Real-time cation transport data are needed to validate model.

μ-XRF showed sufficient spatial and time resolution to monitor Co2+ and Ce3+ across the MEA.

Due to device constraint, only MEA under the inactive area was observable. Transport in the active area will be studied next.
Responses to Last Year AMR Reviewers’ Comments

• “Unclear why the project has such a large portion of electrode development”
 ➢ The present FOA Subtopic 1b.1 (see back-up) clearly states the important of improving high current density MEA performance. Additionally, its key metrics table include targets that only obtainable at MEA level. Thus, MEA evaluation is a big role in our catalyst development.
 ➢ Note that, with the exception of ionic liquid addition, no MEA integration or electrode development is done. MEA is only used as a tool to evaluate new materials.

• “Has shown considerable success for HCD without evaluating durability.”, “should also be tested for low-temperature performance”
 ➢ Durability is a focus of Year2. Now provided this year.

• “Not clear how the team will get ionic liquid to work in an MEA”, “Should quantify IL in electrode”, “study its stability in MEA”
 ➢ We now successfully developed a method to add IL and realize its benefit in MEA.
 ➢ Still have no practical method to quantify IL in MEA. Welcome suggestions.
 ➢ Has not observed stability issue after >1 week. Long-term evaluation of IL is not within the SOPO scope.

• “should show that the knowledge/results from parallel approaches can be combined”
 ➢ As noted earlier, it is not required that benefits must be combined in order to achieve the targets. Yet, we’ve found that some benefits can be combined (e.g., ionic liquid + porous carbon, ordered PtCo + porous carbon).
Future Work

- Implement intermetallic alloy (stability), ionomer, and ionic liquid (activity) with new carbons.
- Evaluate performance and durability of new catalysts using MEA diagnostics, tomography, and modeling.
- Optimize catalyst for both activity & HCD durability.
- Develop and validate cation fundamental performance model.
- End of June 2018 Go/No-go: >0.44 A/mg$_{PGM}$, <40% mass activity loss with preferred design
- Prepare MEAs for DOE validation.

Any proposed future work is subject to change based on funding levels.
Summary

- Clear paths to better activity and durability with promising new materials
 - Ordered intermetallic PtCo showed exceptional stability.
 - Improved ORR activity can be obtained with ionic liquid in MEA
 - Continual improvement in durability of accessible carbons

- Improved understanding of low-PGM electrode
 - Internal pore size (opening) is the key factor for good ORR activity and transport properties.
 - Proton transport in internal pore is sufficient. Local-O$_2$ transport is a neck.
 - Accessible catalysts degrade more quickly than KetjenBlack, but their absolute performance is still very good.
 - Made progress toward validating understanding of cation performance effect.

This Year: 7 Articles, 24 Talks (6 invited), 2 Patent Applications
Acknowledgements

DOE
– Greg Kleen (Technology Manager)
– Donna Ho (Technology Manager)

General Motors
– Aida Rodrigues, Yevita Brown, Sheryl Forbes, Charles Gough (Contract Managers)
– Venkata Yarlagadda
– Michael K. Carpenter
– Yun Cai
– Thomas E. Moylan
– Joseph M. Ziegelbauer
– Ratandeep Singh Kukreja
– Wenbin Gu
– Srikanth Arisetty
– Roland Koestner
– Cristin L. Keary
– Qiang Li and team
– Peter Harvey and team
– Kathryn Stevick and team
– Tim Fuller
– Shruti Gondikar
– Mohammed Atwan
– Nagappan Ramaswamy
– Dave Masten
– Swami Kumaraguru
– Craig Gittleman
– Mark F. Mathias

3M
– Dr. Andrew Haug (sub-PI)
– Matthew Lindell
– Tyler Matthews

Carnegie Mellon University
– Prof. Shawn Litster (sub-PI)
– Shohei Ogawa
– Jonathan Braaten
– Leiming Hu
– Yuqi Guo

Cornell University
– Prof. David A. Muller (sub-PI)
– Prof. Héctor Abrenño
– Elliot Padgett
– Barnaby Levin
– Yin Xiong
– Yao Yang

Drexel University
– Prof. Joshua Snyder (sub-PI)
– Yawei Li

NREL
– Dr. K.C. Neyerlin (sub-PI)
– Luigi Osmieri
– Jason Christ
– Shaun Alia
– Jason Zack

ANL / APS
– Dr. Deborah J. Myers
– Dr. Nancy N. Kariuki
– Dr. Ross N. Andrews
– Dr. Jan Ilavsky

LANL
– Dr. Andrew M. Baker
– Dr. Rangachary Mukundan
– Dr. Rod L. Borup
Technical Back-Up Slides
Vulcan-supported catalysts have more severe coarsening and form large irregular particles by coalescence.

Coarsening is less severe for HSC-supported catalysts, which maintain smaller particles with roughly spherical morphology, suggesting most coarsening by Ostwald ripening only.

Pt loss to the membrane combined with catalyst coarsening together explain all ECSA loss.
Ex-Situ Transport Measurements

Technical Accomplishment:

Evaluating potential dependent surface charge and proton conductivity

- Carbon support H⁺ conductivity strongly potential dependent with low value at ORR potentials
- Strong RH dependence due to proton transport in adsorbed liquid water
- The presence of Co²⁺ cations causes a significant increase in the oxygen transport resistance of PFSA membranes, especially at high cation loading and low membrane water content.
- Consistent with increase in local-Pt resistance measured in Co²⁺-doped MEAs at GM.

H⁺ conductivity of Vulcan carbon black (VCB) and 10 wt% Pt/VCB

- Oxygen transport resistance of cobalt contaminated ionomer membrane
Technical Accomplishment:
Dissolution of Interior & Exterior Pt

- The outer particle in contact with the ionomer film grows.
- Because interior particles are generally smaller, this trend is further accelerated on real catalysts.
Catalysts are key cost components for both transportation and stationary PEM fuel cells and catalyst/support/electrode degradation is often the factor determining fuel cell durability. The focus of this subtopic is novel catalyst and support research that will improve mass activity at high potentials, improve performance at high current density, and improve durability while decreasing cost. Studies of interest will decrease loading of platinum group metals (PGM) in the fuel cell and increase performance and durability. These catalyst studies include research on low PGM loading cathode catalysts for membrane electrode assemblies (MEAs) with total PGM loadings less than the 2020 target of 0.125 mg PGM/cm² and 0.125 mg PGM/kW. Support studies include novel carbon-based support materials and structures and non-carbon concepts. Applications should show the potential to meet all of the 2020 targets in Table 1 simultaneously.

- Durability testing consists of 30,000 voltage cycles performed according to Appendix E Table E1.
- Durability testing consists of 5,000 voltage cycles performed according to Appendix E Table E2.
- Test at 80°C H₂/O₂ in MEA; fully humidified with total outlet pressure of 150 kPa (abs); anode stoichiometry 2; cathode stoichiometry 9.5

Applications must clearly indicate the status of their proposed technology in terms identified in the metrics table. The metrics table must identify key metrics and targets associated with catalyst performance and durability. The key barriers to meeting these targets must be clearly identified, as well as proposed technology innovations for addressing them.

The application must encompass work up to and including single cell MEA testing at a size of ≥50 cm². The work plan should include a discussion of durability testing of sufficient duration to show viability. At a minimum, durability testing should include Accelerated Stress Tests (AST) according to the protocols in Appendix E, Tables E1 and E2.

The deliverable in this subtopic is a set of MEAs (6 or more, each with active area ≥50 cm²) that is made available for independent testing and evaluation at a DOE-approved location.

Table 1: Technical Targets for Catalysts

<table>
<thead>
<tr>
<th>Metric Description</th>
<th>Units</th>
<th>2020 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum group metal (PGM) total content (both electrodes)</td>
<td>g/kW</td>
<td><0.125</td>
</tr>
<tr>
<td>PGM total loading (both electrodes)</td>
<td>mg/cm²</td>
<td><0.125</td>
</tr>
<tr>
<td>Loss in catalytic (mass) activitya,b</td>
<td>% loss</td>
<td><40</td>
</tr>
<tr>
<td>Loss in performance at 0.8 A/cm²a</td>
<td>mV</td>
<td>30</td>
</tr>
<tr>
<td>Loss in performance at 1.5 A/cm²b</td>
<td>mV</td>
<td>30</td>
</tr>
<tr>
<td>Mass activity @ 900 mV_R,freea</td>
<td>A/m²PGM</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Subtopic 1b.1: Low PGM Cathode Catalysts

FCTO seeks approaches that show the potential to decrease PGM loadings below the 2020 target, while increasing durability, especially in the high power density region. Applicants should clearly state the status of their current catalyst technology and provide sufficient justification that the approach can reduce total PGM content below 0.125 g/kW. Rare or precious metals other than platinum group metals can be part of the strategy, but prices of these materials can increase dramatically with demand; therefore, minimizing loading of rare or precious metals is desired. If other rare or precious metals are included, expected loadings of these materials should also be provided.

Catalyst performance under high power conditions in real operating environments is critical to meeting fuel cell cost targets. Applicants should discuss performance issues at current densities of 1.5 A/cm² and above and strategies for overcoming transport and durability issues for performance at high current density. Performance degradation at high current density has been correlated to a loss in electrochemical surface area. Applicants should outline strategies to decrease ECSA losses with potential cycling as well as strategies to deal with other degradation losses their approach may incur, such as decreased ionomer conductivity due to ion exchange of proton conducting sites with leached metal ions.