Corrosion-Resistant Non-Carbon Electrocatalyst Supports for PEFCs

PI: Vijay K. Ramani
Washington University in St. Louis

Project # FC145

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Date: 06/14/2018
Timeline and budget

- **Project start date:** 03/01/16*
- **Project end date:** 08/31/19+
- **Total project budget:** $3,397,431
 - **Total recipient share:** $397,431
 - **Total federal share:** $3,000,000
 - **Total DOE funds spent**: $1,350,000

* Official date of contract from DOE. Issue of sub-contracts were finalized on April 15th 2016. Kick-off meeting held on April 21st 2016

+ Reflects a 6-month no-cost extension granted due to PI move to WashU

** As of 2/28/17.

Barriers to be addressed:
- Durability
- Performance
- Cost

<table>
<thead>
<tr>
<th>2020 Target</th>
<th>Loss in catalytic (mass) activity(^{a,b})</th>
<th><40% loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loss in performance at 0.8 A/cm(^2) (^a)</td>
<td>30mV</td>
</tr>
<tr>
<td></td>
<td>Loss in performance at 1.5 A/cm(^2) (^b)</td>
<td>30mV</td>
</tr>
<tr>
<td></td>
<td>Mass activity @ 900 mV(_{iR-free}) (^c)</td>
<td>0.44A/mg(_{PGM})</td>
</tr>
</tbody>
</table>

Partners
- **Project lead:** Washington University in St. Louis
- **Partners (sub-contractors):**
 - Nissan Technical Center, North America
 - University of New Mexico
Impact of carbon corrosion on PEFCs

Carbon is mainly used as an electrocatalyst support due to its:

- High electrical conductivity (> 20 S/cm)
- High BET surface area: 200 - 300 m²/g
- Low cost

Electrochemical oxidation of carbon occurs during fuel cell operation

\[\text{C} + 2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}^+ + 4\text{e}^- \quad E^\circ = 0.207 \text{ V vs. SHE} \]

Carbon corrosion is accelerated:

- During start/stop operation (cathode carbon corrosion)
- Under fuel starvation conditions (anode carbon corrosion)

Kinetic and ohmic losses result due to:

- Pt sintering and loss of contact between Pt and C

Mass transport losses occur due to

- Formation of hydrophilic groups => flooding
Research objectives: Technical targets

- Conducting, doped, non-PGM metal oxides (electron conductivity >0.2 S/cm)
- High surface area (>70 m²/g)
- Exhibits SMSI with Pt
- Corrosion resistant (DOE 2020 targets)
- High electrocatalyst performance (DOE 2020 targets)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>SoA (Pt/C)*</th>
<th>SoA (Pt/RTO)</th>
<th>Proposed approach status (Pt/TiO₂-Ta)**</th>
<th>End target</th>
<th>DOE 2020 target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PGM content</td>
<td>g kW⁻¹</td>
<td>0.55</td>
<td>0.55</td>
<td>Not Available</td>
<td>0.25</td>
<td><0.125</td>
</tr>
<tr>
<td>Total PGM loading</td>
<td>mg cm⁻²</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.25</td>
<td><0.125</td>
</tr>
<tr>
<td>Voltage at 1.5 A cm⁻² (air)</td>
<td>V</td>
<td>0.45</td>
<td>0.48</td>
<td>0.3</td>
<td>0.55</td>
<td>N/A</td>
</tr>
<tr>
<td>Loss in mass activity a,b</td>
<td>% loss</td>
<td>32</td>
<td>33</td>
<td><10%</td>
<td><5%</td>
<td><40</td>
</tr>
<tr>
<td>Voltage loss at 0.8 A cm⁻² a</td>
<td>mV</td>
<td>81</td>
<td>9</td>
<td>< 15</td>
<td><10</td>
<td>30</td>
</tr>
<tr>
<td>Voltage loss at 1.5 A cm⁻² b</td>
<td>mV</td>
<td>182⁺</td>
<td>20</td>
<td>N/A; 20 mV at 1Acm⁻²</td>
<td><20</td>
<td>30</td>
</tr>
<tr>
<td>Mass activity@900 mV iR-free</td>
<td>A mg⁻¹PGM</td>
<td>0.07</td>
<td>0.07</td>
<td>ca. 0.05</td>
<td>0.3</td>
<td>0.44</td>
</tr>
</tbody>
</table>

*a-Table E1, b-Table E2; Appendix E of FOA; c DOE protocol per appendix E of FOA; *Pt/C refers to Pt/Graphitized Ketjen Black tested at NTCNA; **Results from entirely un-optimized MEAs run primarily to test stability. *Pt/HSAC durability is much worse – MEA does not run beyond 0.5 A cm⁻² after start-stop cycling. Data from MEA in a PEFC.
Approach

Milestones

<table>
<thead>
<tr>
<th>1st Year</th>
<th>Q1</th>
<th>2g Ta-doped TiO₂ (or similar)</th>
<th>B.E.T. surface area >30 m²g⁻¹; Electronic conductivity > 0.2 S cm⁻¹</th>
<th>(100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q2</td>
<td>2g stable doped metal oxide</td>
<td>B.E.T. surface area > 30 m² g⁻¹; Electronic conductivity >0.2 S cm⁻¹</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>Q3</td>
<td>2g TiO₂ using SSM (or similar)</td>
<td>B.E.T. surface area >50 m² g⁻¹; Particle size <70nm</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>Q4</td>
<td>2g Ta-doped TiO₂ support using SSM (or similar)</td>
<td>B.E.T. area >50 m² g⁻¹; Particle size <70nm, conductivity > 0.2 S cm⁻¹</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>Q5</td>
<td>Demonstrate SMSI as ascertained by Pt d-band filling (XPS)</td>
<td>Meet durability target in RDE (ECSA Loss <5% - 10,000 start-stop cycles)</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>Q6</td>
<td>Demonstrate 10% increase in mass activity (BoL in RDE) at 0.9V over Pt/C benchmark</td>
<td></td>
<td>(100%)</td>
</tr>
<tr>
<td>2nd Year</td>
<td>Q7</td>
<td>B.E.T. Area>70 m² g⁻¹; Particle size <70nm; conductivity of at least 0.2S cm⁻¹</td>
<td>Meets stability and durability in RDE per DOE metrics (ECSA Loss <5%)</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>Q8</td>
<td>20-40wt%Pt; Surface area> 70 m² g⁻¹ Pt particle size 3-6nm;</td>
<td>Meets DOE 2020 durability targets in RDE and MEA</td>
<td>(80%) (100%)</td>
</tr>
</tbody>
</table>
Density Functional Theory - Doping of TiO$_2$ with Ta

Change in the electronic structure of supports as a result of doping

DFT optimized structure of TiO$_2$ (PBEsol functional). Cell parameters $a=4.56$, $b=4.56$, $c=2.93$ Å
red – O, blue - Ti

- TiO$_2$ is a semiconductor, absorbs in UV.
- Direct B-G of 1.82 eV at PBEsol level, 3.44 eV at HSE06 level (hybrid functional needed).
- Experimental reports 3.3-3.6 eV (UPS-IPS spectroscopy).

DFT calculated band structure of TiO$_2$. Top HSE06 level, bottom PBEsol level
Design Porous TiO$_2$ supports

Synthesis and characterization of high surface area TiO$_2$ supports.

(i) Synthesis of TiO$_2$ support.
- sol–gel technique
- alkoxides titanium as precursors

(ii) Sacrificial support method (Templating)
- Cab-O-Sil L90 surface area \sim90 m2 g$^{-1}$, 0.22 µm
- Cab-O-Sil EH5, surface area \sim400 m2 g$^{-1}$, 0.14 µm
- pyrolyzed at 850°C followed by leaching with 40 wt.% HF

(iii) Characterization of TiO$_2$ support
- Morphology: SEM, N$_2$-sorption BET surface area, pore size analysis
- Composition: EDS, XPS, Elemental Mapping
- Structure: XRD
- electron conductivity (in-house test cell)

Leaching the sacrificial silica support: Porous TiO$_2$ support
Support Synthesis and Pt deposition strategy

Pros: High surface area and porosity

Cons: Lower conductivity can affect catalyst layer resistance

Optimize annealing temperature to achieve proper combination of conductivity, surface area and porosity in the support material.

Pro: High conductivity

Cons: Lower porosity and partial agglomeration can affect MEA fabrication and increase mass transfer resistance in fuel cell.

Based on different surface properties, different deposition methods were used to obtain small Pt particle size and well dispersed Pt clusters:

- **Atomic layer**: Pt precursor absorbed
- **Colloidal method**: PtO₂ absorbed
- **Formic acid reduction**: Acidic environment
- **Polyol method**: Alkaline environment

Approach

Support Synthesis and Pt deposition strategy

Pt deposition

- **Atomic layer deposition**
- **Formic acid reduction**
- **Colloidal method**
- **Polyol method**

Wet gel

- **aerogel**

xerogel
Accomplishments and Progress

Pt on TiO$_2$ doped with Ta, Nb, W, and Mo

d-band center relative to the Fermi level
\[
\begin{align*}
\epsilon_d - E_F &= -2.02 \text{ eV for Pt(111)} \\
\epsilon_d - E_F &= -2.34 \text{ eV for Pt(111) on Ta:TiO}_2(100) \\
\epsilon_d - E_F &= -2.28 \text{ eV for Pt(111) on Ta:TiO}_2(110) \\
\epsilon_d - E_F &= -2.32 \text{ eV for Pt(111) on Nb:TiO}_2(100) \\
\epsilon_d - E_F &= -2.29 \text{ eV for Pt(111) on Nb:TiO}_2(110) \\
\epsilon_d - E_F &= -2.28 \text{ eV for Pt(111) on Mo:TiO}_2(100) \\
\epsilon_d - E_F &= -2.27 \text{ eV for Pt(111) on Mo:TiO}_2(110) \\
\epsilon_d - E_F &= -2.30 \text{ eV for Pt(111) on W:TiO}_2(100) \\
\epsilon_d - E_F &= -2.26 \text{ eV for Pt(111) on W:TiO}_2(110)
\end{align*}
\]

- TiO$_2$ support beneficial for the activity of Pt towards ORR
 > depositing Pt on doped TiO$_2$ lowers the d-band center by altering its electronic structure
- DFT predicted ORR activity trend: Pt on Ta/Nb/Mo/W:TiO$_2$(110) > Ta/Nb/Mo/W:TiO$_2$(100) > Pt

Projected Density of States (PDOS) of Pt(111) and Pt(111) on TiO$_2$(110) doped with 4% Ta, Nb, Mo, and W.
Figure. DFT calculated electronic structure of SnO₂ and SnO₂ doped with 4% Sb. Left PBE functional; Right PBE+U (U=7.7)

- SnO₂ is a semiconductor, with a band gap of 3.5 eV at PBE+U level (exp value 3.6 eV);
- Sb:SnO₂ (4% doping) is a n-type semiconductor → good agreement with experiment and previous theoretical calculations

- Strong interaction between Pt(111) and Sb:SnO₂ predicted, -0.13 eV/atom
- ORR overpotential on supported Pt(111) similar to that of unsupported Pt(111); larger stability expected

Figure. Projected Density of States of Pt(111) supported on Sb:SnO₂(100) and Sb:SnO₂(110).

\(\varepsilon_d - E_F \) for Pt(111):
- \(\varepsilon_d - E_F = -2.02 \) eV for Pt(111) on Sb:SnO₂(100)
- \(\varepsilon_d - E_F = -2.06 \) eV for Pt(111) on Sb:SnO₂(110)

\(\varepsilon_d - E_F \) for Pt(111) supported on Sb:SnO₂(100) and Sb:SnO₂(110).
Pt/Nb-TiO$_2$ on oxygen reduction reaction (Q5, Q6 milestone accomplished)

Mass activity

- Pt/NTO: 155 mA/mg$_\text{Pt}$ at 0.9V vs. RHE
- Pt/C: 124 mA/mg$_\text{Pt}$ at 0.9V vs. RHE
Oxygen reduction reaction kinetics model (Q5 milestone accomplished)

- NTO can significantly increase the reaction rate constant (k_3) via the 4-electron transfer pathway.
- The k_2 of the Pt/C was higher than that of the Pt/NTO. This is because too weak oxygen binding energies impede O–O bond cleavage, while too strong binding energies inhibit the formation of O–H bonds and instead facilitate H_2O_2 formation.
- The electron structure change of the Pt/NTO should have an intermediate oxygen binding energy.
Accomplishments and Progress

Electrochemical stability of Pt/Sb-SnO$_2$ catalyst (Q7 milestone accomplished)

- ALD-Pt /Sb-SnO$_2$ and Colloidal-Pt/ATO was extremely stable under start/stop support protocols.
- BoL RDE ECSA for Pt/HSAC benchmark was 85m2/g$_{\text{Pt}}$ and for ALD-Pt/Sb-SnO$_2$ was ca. 75m2/g$_{\text{Pt}}$ for Colloidal-Pt/ATO was ca. 68m2/g$_{\text{Pt}}$
Accomplishments and Progress

Fuel cell durability at 80°C for MEA with Pt/ATO catalyst at cathode (Q8 milestone accomplished 80%)

- Pt/ATO shows remarkable start-stop stability
- Much better performance at EOLs with no optimization of the Pt/ATO electrode.
- Low Pt wt% (~16%) and thinner CL currently limits BoL performance
- O₂ GTR and MEA optimization studies are ongoing.

Comparison of IV performance obtained Pt/Vulcan C and Pt/ATO before (closed symbols) and after (open symbols) start-stop protocol for 1000 and 5000 cycles (for Pt/ATO) at 80°C, 100%RH and 70%RH for Pt/Vulcan C and Pt/ATO, respectively. Pt loading: 0.1 mgPt/cm²
“Fuel cell catalysts made with supports that have >500 m²/g BET surface area often still have difficulty achieving at least 50 m²/g electrochemical surface area (ECSA) because of limitations of the triple-phase boundary, catalyst processing, and ink processing. The possibility of a 30 m²/g BET surface area support being able to achieve exactly 30 m²/g ECSA in order to obtain a roughness factor of at least 50 cm²Pt/cm² at a cathode loading of 0.167 mg/cm² (which is higher than the DOE target for total loading) is extremely remote.”

This comment is not entirely true as we do get more than 50 m²/g ECSA for supports with lower than 500 m² BET area (eg: graph Ketjen black). We are already showing up to 75 m²/g ECSA using Pt/Sb-doped SnO₂. Comment is therefore incorrect. We can share the data.

“The lack of any mass or specific activity data reported for these samples leads to concerns about the performance of these materials, as well as any potential advantages from strong metal support interactions as promoted as a motivation for investigating these specific families of materials.”

We have mass activities in RDE comparable to or higher than Pt/C in RDE. This meets/exceeds our stated goal and provides us with a strong baseline towards MEA studies and DOE 2020 targets.

“It looks like there is only one metal oxide family than can meet both support surface area and conductivity targets.”

We respectfully disagree. Thanks to guidance from DFT our team explored doped titanium oxides which are electron excessive conductors and antimony doped tin oxide which is an intrinsically conductive oxide. Not only are these different oxides, They have different conduction mechanisms and are stable due to different mechanisms. This gives us a strong materials platform for advancing to MEA studies.

It is recommended that this project be refocused on developing an anode catalyst.

It was our understanding that DOE precluded anode catalyst development in the FOA topic. We have done this independently with excellent results.
Collaboration

Washington University in St. Louis
• **Lead PI and Technical PoC:** Vijay K. Ramani, Roma B. and Raymond H. Wittcoff Professor of Washington University in St. Louis
• Metal oxide synthesis and characterization, RDE testing (ORR activity and electrochemical stability), PEFC evaluation

Nissan Technical Center, North America
• PI and Technical PoC: Nilesh Dale (Manager-Fuel Cell and Business Research)
• Electrochemical evaluation of the catalysts in PEMFC

University of New Mexico
• **PI and Technical PoC:** Plamen Atanassov (Distinguished Professor of Chemical and Biological Engineering)
• Modeling of doped MO conductivity and SMSI (DFT), scale-up of doped metal oxide synthesis
Facility and Equipment Capabilities

- **Scanning Electron Microscope (SEM, STEM, EDS)**
- **X-ray Fluorescence Spectrometer (XRF):** To determine the Pt loading.
- **X-ray Photoelectron Spectroscopy (XPS):** To determine SMSI.
- **Rotating Disk Electrode:** *ex-situ* catalyst performance and durability

5 fuel cell test test-stations (Hydrogenics)

Expertise in the fabrication and characterization of catalyst layer (CL): ionomer volume fraction, proton transport resistance, and oxygen transport resistance.
Remaining Challenges and Barriers

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Milestone</th>
<th>Milestone Description</th>
<th>Milestone Verification Process*</th>
<th>Anticipated Date/Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Milestone 10.1</td>
<td>Pt/DS catalyst</td>
<td>Demonstrate “End Project” durability metrics and at least 80% of mass activity metric</td>
<td>M33/Q11</td>
</tr>
<tr>
<td>6</td>
<td>Milestone 6.2.2</td>
<td>Pt/DS catalyst</td>
<td>In addition to Milestone 6.2.1, meet “End Project” BoL mass activity target</td>
<td>M36/Q12</td>
</tr>
<tr>
<td>11</td>
<td>Milestone 11.1</td>
<td>Deliver cost model</td>
<td>Specify cost of best 2 Pt/DS materials</td>
<td>M39/Q13</td>
</tr>
<tr>
<td>12</td>
<td>Milestone 12.1</td>
<td>Deliver six 50 cm² active area MEAs to DOE</td>
<td>Meet “End Project” durability, activity, and performance targets in Table 2</td>
<td>M42/Q14</td>
</tr>
</tbody>
</table>
Remaining Challenges and Barriers

- Enhance the loading of the Pt on the support while maintaining small particle size
- Optimize the structure of the catalyst - enhance the porosity of the support.
- Catalyst agglomeration during MEA fabrication process
- Replicate high activity catalyst in RDE measurement to the fuel cell performance
- Optimize the ionomer loading in fuel cell for the metal oxide supported catalyst
Proposed Future Work

FY 2018

• WUSTL: Materials synthesis and characterization
 ✓ Synthesis and characterization of aerogel Sb doped SnO$_2$ to achieve high surface area and porosity support to help the MEA fabrication and enhance the mass transfer in the fuel cell.
 ✓ Scale up the Nb doped TiO$_2$ to do the fuel cell testing.
• Nissan North America Inc.: durability/performance testing
 ✓ Optimize the MEA fabrication process
 ✓ Accelerated test protocols on materials provided by WUSTL
 ✓ Fabrication / testing of sub-scale and 50 cm2 MEAs
• University of New Mexico
 ✓ DFT calculations: conductivity and SMSI of relevant doped metal oxides
 ✓ Characterization of the doped metal oxides and derived catalysts
 ✓ High surface area support synthesis by SSM.
 ✓ Pt deposition optimization by colloidal and ALD routes

Any proposed future work is subject to change based on funding levels
• Objectives and approach:
 o Synthesize doped metal oxides for catalyst supports
 o High conductivity and BET surface area
 o Demonstrate SMSI and corrosion resistance (attaining DOE 2020 targets)

• Relevance
 o Material-level mitigation strategies can quantitatively solve cathode/anode durability issues

• Accomplishments
 o DFT framework in place to study effect of doping on conductivity and stability
 o Demonstrated SMSI-enhanced activity on Pt deposited on Nb-doped TiO₂
 o Pt deposited on Sb-doped-SnO₂ meets the stability and durability targets in RDE and fuel cell test.

• Collaborations
 o Washington University in St. Louis
 o Nissan Technical Center, North America
 o University of New Mexico