The Hybrid Tiger: A Long Endurance Solar/Fuel Cell/Soaring Unmanned Aerial Vehicle

Richard Stroman and Daniel Edwards
US Naval Research Laboratory
Washington DC
Background:
Fuel Cell Propulsion, Soaring, and Solar

Ion Tiger: NRL’s first “practical” fuel cell powered UAV
- 16 kg, 5.7 m wingspan autonomous air vehicle
- Gaseous H\(_2\) fuel: 22 L at 5,000 psi and 25°C \(\rightarrow\) 500 g
- Liquid H\(_2\) fuel: 19.8 L at 20 psi and 22 K \(\rightarrow\) 1300 g
- Unofficial flight endurance records – 26 h (GH\(_2\)) and 48 h (LH\(_2\))

Ion Tiger demonstrated the feasibility of fuel cell UAV propulsion with high performance H\(_2\) storage

Auto-soaring
- Harvest energy from atmosphere by climbing in rising air
- Key is *autonomously* finding and exploiting rising air
- Can yield long flights with little energy input – e.g. 70 mi w/o motor!

Integrated Solar
- NRL has unique co-cured solar panel integration process
- Nearly “free” flight during daylight – overnight difficult for tactical vehicles

Solar and soaring experiments have demonstrated day-long flights with little to no net energy consumption
Next Step: The Hybrid Tiger Unmanned Air Vehicle

Goal: Demonstrate synergistic range and endurance benefits by integrating fuel cell propulsion, soaring, solar harvesting, and optimal path planning

Exploit Multiple Energy Sources
- Photovoltaics
- Fuel Cell & H₂ Fuel Storage
- Autonomous Soaring

Maximize Performance
- Novel Energy Optimization Algorithms
- Real-Time Energy Management & High Efficiency Components
- DoD weather forecast

Main Challenges
- Automatically identifying how best to exploit the environment
- Robust integration of technologies with software-heavy focus
- Lightweight and energy efficient aircraft design

Integrated System: Hybrid Tiger
Group II UAS with Multi-Day Endurance
Hybrid Tiger Vehicle Design

430 W PV Array with 23% Efficient GaAs Cells

53 L H₂ Fuel Tank

Payload

Laminar Flow Wing with Co-Cured PV Array

Brushless DC Motor w/ Variable Pitch Propeller

PEM Fuel Cell & Controls

Energy Management & Optimization Systems
Fuel Cell Propulsion

Fuel Cell
- PEM system from Protonex Technology Corp.
- Liquid cooled with external radiator
- Maximum output ~625 W net

H₂ Storage
- 53 L carbon overwrapped, Al lined Type III pressure vessel
- 13.6 wt % H₂ storage at 5,000 psi
- Lightweight single stage pressure regulator

PEM Fuel Cell / Solar Hybrid

<table>
<thead>
<tr>
<th>Source of Electricity</th>
<th>Hydrogen Generation System</th>
<th>Hybrid Tiger</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Solar Array</td>
<td>Hydrogen Generation System</td>
<td>Hybrid Tiger</td>
</tr>
</tbody>
</table>

- Conceptually, the H₂ could be produced locally by energy harvesting:

- Fuel cell enables solar array to capture “free” energy on following day. Each additional day increases system specific energy & endurance.

Conceptual, the H₂ could be produced locally by energy harvesting:

Specific energy is energy/mass:

- Li-Ion battery: 250 Wh/kg
- Fuel cell system*: 2800 Wh/kg
- Solar day 1**: 1600 Wh/kg
- Solar day 2: 3200 Wh/kg

* Incremental weight with fuel and tank, assuming 500 W fuel cell is sunk cost.
** Roughly 22% efficient PV cell for 12 h cosine day at 1000 W/m² peak.
Solar Energy Harvesting

Solar Arrays
- 23% efficient GaAs cells co-cured in composite wings by NRL
- Multiple arrays enable independent max power point tracking
- Maximum output ~600 W (AM1.5 conditions)
- Weight: 600 g (~ 1 kg installed)

Maximum Power Point Trackers
- Small, lightweight, and efficient buck/boost with 20 Hz tracking
- I,V, and T data passed to power manager
- Distributed with arrays to minimize wire weight

Smart Battery
- 7s Li-Ion pack with cell balancing, smart charging, and SOC reported
- For emergencies only unlike most solar air vehicles

SBXC UAV with solar integrated by NRL

MPPT

Cells prior to integration

Hybrid Tiger solar array layout
Autonomous Soaring

70.5 mi along prescribed course in 4.5hr, all without a motor.

- NRL’s ALOFT algorithm finds thermals and uses them to gain altitude.
- After a winch-launch to 300ft, the whole flight was autonomous.
- ALOFT completed 70.5 mi of a prescribed 82 mi goal & return task.
Energy-Optimal Path Planning

Use robotics approach to path planning
- Global planner uses weather data to plot energy-optimal global path
- Local planner uses observations to plot energy-optimal path to next global waypoint

Global planner exploits large-scale features: regional wind & solar
Local planner exploits small-scale features: thermals & clouds

Two optimization problems
- Min fuel consumption with time upper bound
- Min time with fuel lower bound

Global optimum is not guaranteed, but seems to be a good approximation
Energy-Optimal Path Planning: GPP

Solution Process

- Navy COAMPS model yields wind & solar flux on 9 km grid
- Use vehicle dynamics and energy models to simulate flight; wrap optimization solver around simulation

Result

- Series of global waypoints with metadata: altitude, speed, and vehicle energy targets
- Substantial energy and/or time savings – varies with weather
Energy-Optimal Path Planning: LPP

LPP Goals

- Manage **flight path**, **altitude**, and **power balance** to reach next GPP waypoint with at the expected time with at least the proscribed energy.
- Exploit rising air to **reduce energy expended** or improve speed.
- Manage speed & altitude during solar interruptions to **maximize average speed** without consuming H$_2$.

LPP Optimization Process

- Objective function: Maximize
 \[\dot{e}_{\text{total}} = w_z + v_a \left(\frac{T}{m g} - \frac{C_L}{C_D} \right) + \dot{e}_{\text{batt}} + \dot{e}_{FC} + \dot{e}_{PV} \]
- \(\dot{e}_{\text{total}} \): total power expenditure
- \(w_z \): updraft input
- \(v_a \): airspeed selection and \(T \): thrust selection
- \(\dot{e}_{PV} \): PV power considering aircraft attitude

Traditional McCready theory: speed to fly

Considering influence of solar harvesting

We can treat sunny regions like rising air and shaded regions like sinking air to incorporate solar harvesting in speed to fly calculations.
Putting It All Together

Software
- Subsystems are ROS nodes or operated by them
- “Supervisor” state machine coordinates interactions of GPP, LPP, and power management

Hardware
- Power management electronics integrate power from solar arrays, fuel cell, and emergency battery.
- A variable pitch propeller consumes power efficiently, and the electronics limit power consumption to operate the fuel cell efficiently.

ROS Network Controlling the Hybrid Tiger

- Global Path Planner
- Local Path Planner
- Energy Manager
- Vehicle Controls

Odroid Board Computer

Power Management and Distribution Board

Software
- Subsystems are ROS nodes or operated by them
- “Supervisor” state machine coordinates interactions of GPP, LPP, and power management

Hardware
- Power management electronics integrate power from solar arrays, fuel cell, and emergency battery.
- A variable pitch propeller consumes power efficiently, and the electronics limit power consumption to operate the fuel cell efficiently.

Energy subsystem interconnections

Key:
- Orange: data
- Red: power
- Black: RF
Major masses contributors:
- 33% is empty H₂ tank alone!
- 28% airframe is on the low side, but achieved with good design.
- 17% is avionics and payload.

Energy Sources:
- 5% solar mass provides one-third of total energy consumed.
- 5% hydrogen mass provides two-thirds of total energy consumed.

H₂ tank mass is opportunity for DoD/DoE collaboration!
Conclusions and Looking Forward

Conclusions so far:
• Major simulation effort has paid off in improved design and schedule
• Opportunities for improvement include fuel tank mass and system-level integration & optimization
• Small performance improvements (efficiency, specific energy, etc.) add up quickly

Looking forward:
• First flight planned for early summer; battery electric and then spiral in hybrid systems
• Continue to leverage DoD and DoE investments in fuel cells, solar (PV) conversion, H₂ storage, weather prediction and optimized energy harvesting
• Apply the lessons learned from Hybrid Tiger to other platforms