Overview

Timeline and Budget

- Project start date: 10/1/2015
- FY16 DOE Funding: $1M
- FY17 DOE funding: $900K
- FY18 planned DOE funding: $800K
- Total DOE funds received to date: $2M*

* As of 3/31/18

Barriers

- H₂ molar yield (AX)
- Feedstock cost (AY)
- System engineering (AZ)

Partners

- Dr. Bruce Logan
 Pennsylvania State University
- Drs. Steven Singer, Lawrence Berkeley National Lab (LBNL) and Ken Sale, Sandia National Lab (SNL)
- Dr. James Liao at UCLA (no cost)
Overall Objective: Develop *direct* fermentation technologies to convert renewable lignocellulosic biomass resources to H$_2$.

Current Project Year Objectives (April 2017 – April 2018)

- **Addressing feedstock cost barrier**
 - Increase solid substrate loading to obtain high rate of H$_2$ production leading to a smaller bioreactor footprint to lower the cost of H$_2$.
 - Improve biomass utilization by converting most of the sugars (5-carbon and 6-carbon sugars) to H$_2$ production either via co-culture systems or genetic engineering of *Clostridium thermocellum*.

- **Addressing H$_2$ molar yield barrier**
 - Identify electron carriers to boost H$_2$ production.
 - Determine the most important cellulose-degradation pathways to yield H$_2$.
 - Microbial Electrolysis Cells (MEC): Replace the costly platinum cathode with inexpensive materials while still obtaining high rate of H$_2$ production, ultimately using fermentation waste – also addressing waste removal.

This project addresses key DOE Technical Targets and leverages DOE Bioenergy Technologies Office (BETO) investment in biomass pretreatment.
Approach
Task 1: Bioreactor Performance

• **Approach:** Optimize bioreactor in batch and fed-batch modes by testing parameters such as corn stover lignocellulose loadings (DMR pretreatment), and hydraulic retention time (HRT), using the cellulose-degrading bacterium *Clostridium thermocellum* engineered to co-utilize both cellulose and hemicellulose.

![Diagram of Lignocellulosic Biomass and Bioreactor Performance]

- **Pretreatment – De-acetylated and Mechanically Refined (DMR)**
 - Solid: 44% cellulose, 23% xylan, 17% lignin, Ash, etc.
 - Liquid: 79% acetate, 2.9% xylan

- **Ferment all the sugars to H₂ in one bioreactor**

- **Engineer Cellulose Microbe to Co-metabolize C₅ Sugars**
 - Cellulose (C₆ polymer)
 - Hemicellulose (C₅ polymer)
 - Xylose (C₅)
 - C. thermocellum
 - Cellulases
 - Hemicellulases
Task 1. Accomplishments and Progress: Achieved a H_2 Production Rate of 2.6 $L/L_{reactor}/d$

| FY17 Q4 Milestone | Optimize and increase biomass substrate loading either in a sequencing fed-batch or batch mode operation, and obtain an average H_2 production rate of at least 2.5 $L/L_{reactor}/day$ for a duration of minimally 24 h using DMR biomass as the substrate (NREL). | 9/2017 | 100% complete |

Strategies to increase rate of H_2 production:

- Tested 5-30 g/L of avicel (pure cellulose) loading with 30 g/L yielded the fastest H_2 production rate.
- Tested 5-40 g/L loadings of DMR (as cellulose), with 30 g/L yielded the highest rate (2.6L H_2 /L/d).
- Lower rate from higher DMR loading could be due to insufficient mixing, which warrants high-solid reactor development.

The most productive phase (25 h) yields a H_2 production rate of **2.6 $L/L_{reactor}/d$**, which is **2.4-fold** higher than that obtained in the last DOE review, benchmarking the progress.
Accomplishment: 3.5-fold Increase in Rate of Xylose Utilization

Using laboratory adaptive evolution, we will improve the rate of xylose utilization and identify one gene putatively responsible for faster xylose consumption. We will profile H₂ production, substrate consumption, and metabolite profiles in the adapted and evolved C. thermocellum strain (NREL).

- We engineered xylose utilization by inserting xylAB genes into the C. thermocellum genome for higher stability.
- Xylose is a hemicellulose-derived sugar. We increased rate of xylose consumption by adaptive evolution in xylose +/- xylan.

![Graph showing comparison between evolved and control strains](image)

- **Increased xylose utilization by 3.5-fold** in the evolved strain compared to control strain (Dhpt) in xylose.
- **Identified 6 gene mutations** in the evolved strain with validation of a key mutation ongoing.

Xylose engineering published in Biotechnology Bioengineering, 2018.

Katherine Chou
Accomplishment: 1.9-fold increase in Total H\textsubscript{2} Production by Improving Biomass Utilization

| FY18 Q4 Milestone | Optimize and improve biomass utilization by 20% by developing methods to convert both C6 and C5 sugars to H\textsubscript{2}. We will achieve this by ether using \textit{C. thermocellum} already engineered to co-utilize both sugars, or in a binary culture including another microbe to metabolize the C5 sugar of the biomass feedstock | 9/2018 | 50% complete |

- Use two strategies to improve biomass utilization:
 - One approach is to express foreign xylose-pathways genes (\textit{xylAB}) to metabolize xylose.
 - Second approach is to co-culture \textit{C. thermocellum} with two hemicellulose-degrading microbes: \textit{Thermoanaerobacter ethanolicus} (co-culture 1) and \textit{Thermoanaerobacterium saccharolyticum} (co-culture 2), at 55 °C.
- Reviewers suggested last year to test co-culture systems.

Increase total H\textsubscript{2} production by \textbf{1.9} and \textbf{1.6} fold in engineered strains and in a co-culture, respectively, reflecting dramatic improvements in biomass utilization.
Approach: Redirect metabolic pathways to improve \(\text{H}_2 \) molar yield via developing genetic methods.

- Blocking carbon-competing pathways led to 86% increase in rate of \(\text{H}_2 \) production (2016 AMR accomplishment).
- Manipulating cofactor interconversion (NAD[P]H and reduced ferredoxin) led to 35% increase in total \(\text{H}_2 \) production (2017 AMR accomplishment).

FY18 Q3 Milestone

Using qRT-PCR, we will profile expression of the various ferredoxins in *C. thermocellum* and their correlations with peak \(\text{H}_2 \) production in order to identify ferredoxin(s) important in \(\text{H}_2 \) production. The findings will guide the knockout of the ferredoxin to probe its functionality and its over-expression aimed to increase \(\text{H}_2 \) production (NREL).
Task 3 Accomplishments and Progress: Identified 3 Ferredoxins Important in H₂ Production

- The goal is to identify the important ferredoxin(s) in H₂ production to guide genetic strategy for improvement.
- *C. thermocellum* contains up to 7 ferredoxin (Fd1-7) that potentially could donate electrons toward H₂ production.
- H₂ production peaked between OD of 0.44 and 1.0 in *C. thermocellum*, correlated with higher expression of Fd1, Fd2, and Fd3 quantified via the qRT-PCR technique.

Gene Expression Relative to Fd1 at OD₆₀₀ = 0.44

Over-expression of Ferredoxin 1, 2, 3 is a valid strategy leading to increased H₂ production.

Katherine Chou
Accomplishment: Identified EMP Flux Contributes Most to H$_2$ Production

<table>
<thead>
<tr>
<th>FY18 Q2 Milestone</th>
<th>Using isotope-tracer metabolic flux analysis, construct a high-resolution cellular carbon flux map and identify the most important glycolytic route(s) utilized by C. thermocellum to metabolize cellulosic sugars in support of cell growth and H$_2$ production (NREL).</th>
</tr>
</thead>
</table>

- The goal is to identify which cellulose-degrading pathway is important for H$_2$ production to guide improvement.

- **Use 13C-labeled glucose, we constructed a high-resolution cellular carbon flux map to track electron/energy flow in *C. thermocellum***.

- Identified that EMP (Embden-Meyerhof-Parnas) pathway has the highest flux toward H$_2$ production (**heavy arrow**).

The outcomes suggest EMP pathway is a target for manipulations to increase H$_2$ production.

Manuscript submitted to J. Biological Chemistry
Approach
Task 4: Electrochemically Assisted Microbial Fermentation

Microbial Electrolysis Cell (MEC) — Conversion of Organic Waste to Hydrogen Gas

Goal: Achieving high rate of H_2 production with non-Pt based cathode using NREL fermentation effluent.

Effluent from NREL fermentation reactor (Organic acid rich)

Milestones (PSU)

<table>
<thead>
<tr>
<th>Year</th>
<th>Milestones</th>
<th>Completion Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY17</td>
<td>Improve performance and increase electrode loading to double reactor performance to 2.4 L/reactor-d (PSU).</td>
<td>11/2017 – Q4 for Penn State</td>
<td>Complete</td>
</tr>
<tr>
<td>FY18</td>
<td>Evaluation of alkaline pH cathode catalysts and select new alkaline-optimized anion exchange membranes. Using a thinner cathode chamber and optimizing hydroxide ions crossover should improve overall performance by 30% (FY18 Q4; PSU*).</td>
<td>*1/2019 – Q4 of Penn State</td>
<td>On track</td>
</tr>
</tbody>
</table>
Task 4 Accomplishments and Progress: Cathode Chamber Optimization: replaced Pt with alternative materials

Ni-functionalized activated carbon (AC) cathode preparation—by simple adsorption

Abiotic electrochemical test (no catholyte flow)
(NiCl₂·6H₂O loadings: 2.2%, 4.4%, 8.8%)

Ni adsorption was effective to lower potentials for HER.

Great advantage of AC-Ni:
Catalyst can be regenerated by adsorption
(mean ± SD, n=3)

Re-adsorption (1 M NiCl₂) restored (improved!) activity

AC-Ni8.8 cathode produced 1.1±0.1 L-H₂/L-d (with catholyte flow) which is comparable to Pt cathode

Kyoung-Yeol Kim
Accomplishment: Achieve 2.4 L H$_2$/L-d with Low Cost non-Pt Cathode

New MEC design: Reduce anode volume and add 1 more cathode chamber (total 130 mL)

- Anode: 7 brush anodes
- Cathode: 2 stainless steel (SS) wool cathodes (1 each side)
- Both anolyte and catholytes were recirculated

Volumetric current densities and H$_2$ production rates

- Max. current density: \sim400 A/m3 (\sim0.7 day cycle)
- Measured maximum H$_2$ production: 2.8±0.3 L-H$_2$/L-d (\sim0.7 day cycle); 4.7 L-H$_2$/L-d (\sim0.3 d cycle)
- Current drop occurred after day 10, but increasing again after re-inoculation.

H$_2$ production rate meets 2017 milestone (2.4 L/L-d) with low cost SS wool (a non-Pt based cathode) but stability needs to be further studied.
Accomplishments and Progress: Responses to Previous Year Reviewers’ Comments

• Overall this is an exciting project, and future work is pleasantly anticipated.
 – We thank the reviewers for the positive comments. We strive to address technical barriers in order to reach the FCTO H\textsubscript{2} cost goal.

• The project was carried out outstandingly. However, ...the use of pure culture of (engineered) bacteria may not be a low-cost process because of contamination issues...mixed microbial culture might be preferable.
 – The optimal growth temperature of C. thermocellum is 60 °C at which contamination is minimized. Moreover, we have tested successfully a co-culture system including C. thermocellum with T. saccharolyticum, a thermophile. The co-culture exhibited a 60% increase in H\textsubscript{2} production. We routinely used unsterilized corn stover feedstock to lower cost with no contamination issue – another reviewers’ concern.

• The work proposed will continue to build on the progress of the different tasks...it is not clear when these improvements will be combined...i.e., xylose/glucose utilization, media cost reduction, and the enzyme mutations.
 – This is a low TRL research, and we have made improvements in several areas followed by detailed characterizations. We do plan to eventually combine all the beneficial changes in one strain, feeding unsterilized pretreated biomass, in less costly growth medium in mutants with minimal carbon-competing pathways to determine H\textsubscript{2} production and meet FCTO cost goal.
Collaboration and Coordination

• **Task 1 (Bioreactor)**
 Drs. Ali Mohagheghi and Melvin Tucker, National Bioenergy Center at NREL: provide DMR pretreated corn stover and their characterizations - leveraging DOE BETO funding.

• **Task 2 (Ionic Liquid) – discontinued in FY17**
 Drs. Steve Singer (LBNL) and Kent Sales (SNL): conducted biomass pretreatment using ionic liquid as a complementary pretreatment approach to lower feedstock cost.

• **Task 3 (Genetic Methods)**
 Dr. James Liao of UCLA in pathway engineering of *C. thermocellum* – leveraging DOE Office of Science funding.

• **Task 4 (MEC)**
 Dr. Bruce Logan at Penn State University: microbial electrolysis cells to improve H₂ molar yield.
Remaining Challenges and Barriers

Task 1. Bioreactor Performance
• High solid-substrate loading (175 g/L) is needed to lower H₂ selling price, which might present a challenge to ensure sufficient mixing.
 – Novel impeller design with high power/low torque may be able to address this challenge.

Task 2. Fermentation of Pretreated Biomass using Ionic Liquid (LBNL/SNL)
• This task was closed out in FY17/Q1.

Task 3. Generate Metabolic Pathway Mutant in C. thermocellum
• Improve the rate of [xylan] utilization in engineered strain to improve biomass utilization.
 – Continue with adaptive evolution strategy feeding xylose/xylan and select fast grower in xylan.
 – Targeted insertion of foreign genes to overcome the rate-limiting step(s) of xylan utilization.

Task 4. Electrochemically Assisted Microbial Fermentation of Acetate (PSU)
• Maximizing current generation with non-precious metal catalysts
 – Already demonstrated good performance with SS wool;
 – New data suggests Ni adsorption into activated carbon may be better.
• Further reducing reactor size, which will increase overall reactor production rates; examining new anode configurations which may help.
Proposed Future Work: project is scheduled to close out in FY19/Q1

Any proposed future work is subject to change based on funding levels

Task 1 (NREL)
- Optimize cellulose/hemicellulose co-fermentation to improve biomass utilization by at least 20%, in scale-up bioreactors for long-term durability, using either engineered *C. thermocellum* strain or in co-culture systems (FY18/Q4 milestone).
- Test 40-50 g/L DMR biomass substrate loadings (based on cellulose) in the engineered xylan strains (FY19/Q1).

Task 2 (LBNL/SNL): none.

Task 3 (NREL)
- Redesign primers to be more specific to Fd1, Fd2, and Fd3 via qRT-PCR to identify the most important ferredoxin(s) to improve H₂ production as *C. thermocellum* contains multiple ferredoxins with unknown functions (FY18/Q3 Milestone).
- Coordinate with Task 1 in bioreactor work testing engineered *C. thermocellum* expressing a foreign xylosidase enzyme to accelerate xylan conversion to H₂ (FY18/19 Q1).

Task 4 (Penn State):
- Further improve reactor performance using the MEC to produce more than 2.4 L-H₂/Lreactor/d (surpassing the FY17 goal) using synthetic effluent (FY19/Q1).
- Examine if performance can be improved using flat anodes (FY18)
- Improved Ni⁺-AC cathode catalyst performance; examine alternative catalysts at high pH (FY18).

Complete a Close-out Report of the project (FY19/Q1)
Technology Transfer Activities

Technology-to-market or technology transfer plan or strategy

• Air Product and Chemicals, Inc.
 – Main interest in H₂ from biomass can be low carbon or even potentially carbon neutral; have funded the Logan lab in the past for work on MECs and RED for H₂ production from wastewaters
 – Large-scale process of greatest interest, but currently there are no larger reactors.
 – Cost needs to be near to, or lower than, making H₂ from alternative sources (natural gas).

Plans for future funding

• Pursue opportunities to collaborate with other national Labs and industries for potential future funding support.
• Network with biofuels industry to expand the use of H₂.
• Advocate the advantages of “green” H₂ rather than fossil-fuel derived H₂

Patents, licensing

• A Record of Invention (ROI-14-70) is filed for developing the proprietary genetic tools tailored for C. thermocellum.
• A second ROI-15-42 has been filed for generating xylose-metabolizing strain, leading to enhanced biomass utilization.
Summary

Task 1
- Achieved an average (25 h) H_2 production rate of $2.6\text{L H}_2/\text{L reactor/d}$ fermenting DMR-pretreated corn stover directly to H_2, which is **2.4-fold** higher than that obtained in the last DOE review, benchmarking the progress.
- Improved xylose utilization by **3.5-fold** via adaptive evolution in xylose and obtain fast grower.
- Determined **1.9-fold increase** in total H_2 production via improved biomass utilization (both cellulose and hemicellulose) either in engineered *C. thermocellum* or in co-cultures, which could lower H_2 selling price.

Task 2: Closed out in FY17/Q1, not meeting GNG.

Task 3
- Via qRT-PCR, we determined Fd1, Fd2, and Fd3 are most important for H_2 production, which guides genetic strategies for improvement.
- Identified that EMP is the dominant pathway in cellulose hydrolysis, which guides genetic engineering strategies for improvement.

Task 4
- New Ni-functionalized AC cathodes produced comparable H_2 production rate ($1.1\pm0.1 \text{ L/L-d}$) to Pt or SS wool cathodes and catalytic activity of the cathodes was simply restored by re-adsorption of Ni salts.
- H_2 production rate meets 2017 milestone (**2.4 L/L-d**) with SS wool with a newly-designed MEC, and further study is ongoing to achieve long-term stability.
Thank You