PD125

Tandem particle-slurry batch reactors for solar water splitting

Shane Ardo

University of California, Irvine

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Thursday, June 14, 2018

US DOE, EERE, FCTO, Annual Merit Review

Overview

Project Timeline

- Start date: August 1, 2015
- New end date: June 30, 2018 (35-month period of performance)

Project Budget

•	Total budget:	\$1,248,063
	 Federal funds: 	\$ 993,759

0

- Federal funds:
- UCI cost share: \$ 254,304
- Funding by year (UCI only)
 - Years 1-2 spent: 571,658 S
 - Years 1 2 budget: \$ 726,324
 - 109,595 – Year 3 spent*: \$
 - \$ – Year 3 budget:

Barriers Addressed

- (AG) Integrated Device Configurations
- (AH) Reactor Designs
- (AI) Auxiliary Materials
- (AJ) Synthesis and Manufacturing

Partners / Collaborators

- Device-physics modeling and simulation contributors
 - Lawrence Berkeley National Laboratory & **JCAP** (Adam Weber, *sub-recipient*)
 - California Institute of Technology & JCAP (Chengxiang Xiang, *sub-contracted advisor*)
- Materials contributors
 - > Tokyo University of Science (Akihiko Kudo, *unfunded*)

* as of 3/31/2018

Relevance: Motivation

Wafers (Type 4) and Particles (Type 2)

Fixed-electrode Design

- Wafers immersed in electrolyte
- Optical concentration of $\geq 10x$
- Could meet MYRD&D targets
 - High-efficiency materials
 - Large reductions in materials costs

Particle-slurry Design (this work)

- Two particle suspensions
- Side-by-side plastic "baggies"
- Porous via allows mixing of the molecular redox shuttle (A/A⁻)
- Requires many pumps & pipes
- Could meet MYRD&D targets
 - Less stringent requirements
 - TRL is very low

Directed Technologies, Inc., DOE Report, 2009 & Pinaud, ..., Ardo, ..., Jaramillo, Energy Environ. Sci., 2013, 6, 1983

Relevance: Concept

<u>Project Objective</u>: **Experimentally validate** a *new design* for scalable solar- H_2 technologies using laboratory-scale prototype particle suspension reactors

<u>August 2016 Objective</u>: **Numerically demonstrate** that the *new reactor design* can sustain a \geq 1% solar-to-hydrogen (STH) conversion efficiency

	MYRD&D Targets for a Type 2 Reactor					
Characteristics	2011	2015	Proposed	2020	Ultimate	
H ₂ Cost (\$/kg)	N/A	28.60	20.00	4.60	2.10	
η _{sτн} (%)	N/A	1.0	1.0	5.0	10	

DOE Barriers	Project Goal
(AJ) Synthesis and Manufacturing (AG) Integrated Device Configurations	 Synthesize state-of-the-art light-absorber nanoparticle photocatalysts as powders, inks, and thin films Electrodeposit electrocatalysts on light-absorber nanoparticle photocatalysts using solid-state chemistry, photo(electro)deposition, and bipolar electrochemistry
(AH) Reactor Designs	 <u>Model and simulate device physics</u>, techno-economics, and <u>efficiency</u> <u>limits</u> for new tandem two-compartment particle suspension reactors Fabricate model reactors with <i>in situ</i> monitoring capabilities, and assess redox shuttle transport rates
(AI) Auxiliary Materials	 <u>Identify optimal redox shuttles based on</u> optical transparency, rates of mass transport, and <u>efficiency for selective electrocatalysis</u>

* The most important and impactful advances over the past year are underlined

Serial light absorption increases efficiency

Much smaller mass transport distances

Directed Technologies, Inc., DOE Report, 2009 & DOE H2A Analysis, https://www.hydrogen.energy.gov/h2a_production.html 5

Approach: Overview of RD&D

Photoelectrochemistry and lab-scale reactors

Iterative computational and experimental approach

Device physics modeling and simulations

Approach: R&D Materials Choices

Table 4 Reports of visible-light-driven water splitting using suspensions with two particles and an iodine-based redox shuttle^a

					Aguagus	Activity measurement				
HER light absorber	HER cocatalys (wt%)	OER t light absorb	OER cocat er (wt%	alyst)	electrolyte (concentration (mM), pH)	Illumination ^b (irradiance (mW cm ^{-2}), wavelength (nm))	H ₂ , μmol h ⁻¹	Ο ₂ , μmol h ⁻¹	Quantum yield, % (wavelength (nm))	Year ^{ref}
TaON CaTaO ₂ N $BaTaO_2N$ TaON ZrO ₂ -TaON SrTiO ₃ :Cr,Ta Coumarin- $H_4Nb_6O_{17}$ Carbazole- $H_4Nb_6O_{17}$ BaTiO ₃ :Rh Table 5 Re	Pt (0.3) Pt (0.3) Pt (0.3) Pt (0.3) Pt (0.3) Pt (10, 0 Pt (1) A Pt (0.3) Pt (0.5) Pt (0.5) Pt (0.25)	WO ₃ WO ₃ TaON 5.5) ^d WO ₃ TiO ₂ -T WO ₃ WO ₃ WO ₃ WO ₃	$\begin{array}{c} & {\rm Pt} \ (0. \\ & {\rm Pt} \ (0. \\ & {\rm Pt} \ (0. \\ & {\rm RuO}_2 \\ \\ & {\rm Pt} \ (0. \\ & {\rm a}_3{\rm N}_5 \ {\rm Ir} \ (5) \\ & {\rm PtO}_x \\ & {\rm IrO}_2 \\ & {\rm Pt} \ (0. \\ & {\rm IrO}_2 \\ & {\rm Pt} \ (0. \\ & {\rm IrO}_2 \\ & {\rm Pt} \ (0. \\ & {\rm roo}_x \\ & {\rm PtO}_x \end{array}$	5) 5) 5) (0.3) 5) (0.5) and 5) (0.5) and 5) (0.5 (Pt)) splitting u	NaI (5, 7) NaI (5) NaI (5) NaI (1, 6) NaI (10, 0.5) ^d NaI (0.1) NaI (10, 4) KI (5) NaI (10)	Xe (n.r., >420) ^c Xe (n.r., >420) Xe (n.r., >410) Xe (n.r., >410) Xe (n.r., >420) s with two particles and a	$24 \\ \sim 5.5 \\ \sim 6.5 \\ \sim 10 \\ 33 \\ \sim 7 \\ 32 \\ 2.2 \\ 1.7 \\ 1.7 \\ 1.7 \\ non-iodine$	$ \begin{array}{c} 12 \\ \sim 2.5 \\ \sim 3.0 \\ \sim 4 \\ 16 \\ \sim 1 \\ 16 \\ 0.9 \\ 0.7 \\ 0.6 \\ \end{array} $	0.4 (420) n.r. $\sim 0.1 (420-440)$ 0.1-0.2 (420) 6.3 (420.5) n.r. 1.5 (420) 0.05 (480) n.r. 0.5 (420) ox shuttle ^a	$\begin{array}{c} 2005^{151}\\ 2008^{152}\\ 2008^{152}\\ 2008^{155}\\ \textbf{2010}^{153}\\ 2010^{156}\\ 2013^{149}\\ 2013^{164}\\ 2013^{164}\\ 2014^{154} \end{array}$
						Activity measurement				
HER light absorber	HER cocatalyst (wt%)	OER light absorber	OER cocatalyst	Aqueous electroly (concent (mM), p	te rration H)	Illumination ^{b} (irradiance (mW cm ⁻²), wavelength (nm))	H ₂ , μmol h ⁻¹	$O_2,$ µmol h ⁻¹	Quantum yield, % (wavelength (nm)) and/or STH efficiency, %	Year ^{ref}
SrTiO ₃ :Rh SrTiO ₃ :Rh SrTiO ₃ :Rh SrTiO ₃ :Rh SrTiO ₃ :Rh SrTiO ₃ :Rh	Pt (0.5) Pt (0.5) Ru (1) Ru (0.7) Ru (0.7) Ru (0.7)	Bi ₂ MoO ₆ WO ₃ BiVO ₄ BiVO ₄ TiO ₂ :Cr,Sb BiVO ₄	None None None None None	FeCl ₃ (2, FeCl ₃ (2, FeCl ₃ (2, Co(phen [Co(phen [Co(phy])]	$(2.4 \text{ w/ H}_2\text{SO}_4)$ $(2.4 \text{ w/ H}_2\text{SO}_4)$ $(2.4 \text{ w/ H}_2\text{SO}_4)$ $(1.3 \text{ Gl}_2 (1, 7)$ $(1.3 \text{ Gl}_2 (1, 7)$ $(1.3 \text{ GO}_4 (1, 7))$ $(1.3 \text{ GO}_4 (1, 7))$	Xe (n.r., >420) Xe (n.r., >420) Xe (100, >420) Xe (100, >420) Xe (100, >420) Xe (100, >420) Xe (100, >420)	~ 20 ~ 24 130 7.9 3.0 100	~ 10 ~ 11 64 3.5 0.8 47	0.2 (440) 0.5 (420) 4.2 (420), 0.1 STH n.r. ^c n.r. 2.1 (420), 0.06 STH	2004 ⁶⁸ 2004 ⁶⁸ 2013 ¹⁶⁶ 2013 ¹⁴⁴ 2013 ¹⁴⁴ 2013 ¹⁴⁴
	HER light absorber TaON CaTaO ₂ N $BaTaO_2N$ TaON ZrO ₂ -TaON SrTiO ₃ :Cr,Ta Coumarin- H ₄ Nb ₆ O ₁₇ Carbazole- H ₄ Nb ₆ O ₁₇ BaTiO ₃ :Rh Table 5 Re HER light absorber SrTiO ₃ :Rh SrTiO ₃ :Rh SrTiO ₃ :Rh SrTiO ₃ :Rh SrTiO ₃ :Rh	HER light absorberHER cocatalys (wt%)TaONPt (0.3) CaTaO2NTaONPt (0.3) BaTaO2NPt (0.3) BaTaO2NPt (0.3) TaONPt (0.3) ZrO2-TaONPt $(1.0, 0)$ ZrO2-TaONPt $(1.0, 0)$ ZrO2-TaONPt (0.5) H_4Nb6O17Pt (0.5) H_4Nb6O17Pt (0.25) Table 5Reports of vizTable 5Reports of vizSrTiO3:RhPt (0.5) SrTiO3:RhPt (0.5) SrTiO3:RhPt (0.5) SrTiO3:RhPt (0.5) SrTiO3:RhPt (0.5) SrTiO3:RhRu (1) SrTiO3:RhRu (0.7) SrTiO3:RhRu (0.7) SrTiO3:RhRu (0.7) SrTiO3:RhRu (0.7) SrTiO3:RhRu (0.7)	HER light absorberHER (wt%)OER light absorberTaON CaTaO_2N BaTaO_2NPt (0.3) Pt (0.3) WO_3 BaTaO_2NWO_3 WO_3 TaON Pt (0.3) TaON Pt (0.3) Pt (0.3) TaON Pt $(1.0, 0.5)^d$ WO_3 ZrO_2-TAON SrTiO_3:Cr,Ta Pt (1.5) Pt (0.5) WO_3 Coumarin- Pt (0.5) WO_3 H_4Nb_6O_{17} Carbazole- Pt (0.5) WO_3 H_4Nb_6O_{17} BaTiO_3:RhWO_3 Pt (0.25) WO_3Table 5Reports of visible-light-due wo_3HER light absorberMER Cocatalyst (wt%)HER light absorberOER cocatalyst WO_3FTIO_3:Rh SrTIO_3:Rh SrTIO_3:Rh SrTIO_3:Rh Ru (1)BiVO_4 BiVO_4 SrTiO_3:Rh Ru (0.7) BiVO_4 SrTIO_3:Rh Ru (0.7)	HER light absorberHER (wt%)OER light absorberOER (wt%)TaON CaTaO2N BaTaO2N Pt (0.3)Pt (0.3) Pt (0.3)WO3 WO3 Pt (0.3)Pt (0.BaTaO2N DaTaON Pt (0.3)Pt (0.3) WO3 Pt (0.3)TaON WO3 Pt (0.3)RuO2 Pt (0.ZrO2-TaON Pt (10, 0.5)dPt (10, 0.5)dWO3 WO3 WO3 Pt (0.Pt (0.ZrO2-TaON Pt (1)Pt (10, 0.5)dWO3 WO3 Pt (0.Pt (0.ZrO2-TaON Pt (1)Pt (10, 0.5)dWO3 WO3 Pt (0.Pt (0.ZrO2-TaON Pt (1)Pt (10, 0.5)dWO3 WO3 Pt (0.2)Pt (0.ZrO2-TaON Coumarin- Pt (0.5)WO3 WO3 Pt (0.5)Pt (0.Carbazole- H4Nb6O17 BaTiO3:Rh Datio3:RhPt (0.25)WO3 WO3 PtOxPt (0.Table 5Reports of visible-light-driven waterPt (0.HER light absorber (wt%)OER absorber absorberOER cocatalystHER light absorberOER (wt%)OER absorberFTIO3:Rh SrTIO3:Rh Pt (0.5)Bi2MOO6 WO3 NoneNone SrTIO3:Rh Ru (1)BiVO4 SrTIO3:Rh SrTIO3:Rh SrTIO3:Rh Ru (0.7)BiVO4 BiVO4 None SrTIO3:Rh Ru (0.7)None BiVO4 None	HER light absorberHER (wt%)OER light absorberOER cocatalyst absorberTaON CaTaO2N BaTaO2N Pt (0.3)Pt (0.3) (0.3)WO3 WO3 Pt (0.5)Pt (0.5) Pt (0.5)BaTaO2N CaTaO2N Pt (0.3)Pt (0.3) WO3 Pt (0.3)WO3 Pt (0.5)Pt (0.5) Pt (0.5)ZrO2-TaON SrTiO3:Cr,Ta Pt (0.5)Pt (1.0, 0.5)d' WO3 Pt (0.5)Pt (0.5) Pt (1.0, 0.5)d' WO3 Pt (0.5)Pt (0.5) Pt (0.5)SrTiO3:Cr,Ta Coumarin- Pt (0.5)Pt (0.5) WO3 Pt (0.5)WO3 Pt (0.5)PtOx (0.5) Coumarin- Pt (0.5)Carbazole- BaTiO3:RhPt (0.25) WO3 Pt (0.25)WO3 PtOx (0.5 (Pt))Table 5 PtOx (0.5 (Pt))Table 5 SrTiO3:RhPt (0.5) Pt (0.5)BizMOO6 BizMOO6 None Pt eCl3 (2, SrTiO3:RhPt (0.5) Pt (0.5)SrTiO3:Rh SrTiO3:RhPt (0.5) Pt (0.5)BizMOO6 BizMO06 None Pt eCl3 (2, SrTiO3:Rh SrTiO3:RhPt (0.7) Pt (0.5)SrTiO3:Rh SrTiO3:RhPt (0.7) BiVO4 NonePt Cl3 (2, Pt Cl3 (2,	HER light absorberHER (wt%)OER light absorberOER cocatalyst (wt%)Aqueous electrolyte (concentration (mM), pH)TaON TaON Pt (0.3)Pt (0.3)WO3 WO3 Pt (0.5)Pt (0.5)NaI (5, 7) NaI (5)TaON BaTaO2N Pt (0.3)Pt (0.3)WO3 Pt (0.5)Pt (0.5)NaI (5) NaI (5)TaON Pt (0.3)Pt (0.5)NaI (10, 0.5)dTaON Pt (0.3)Pt (1.0, 0.5)dWO3 Pt (0.5)Pt (0.5)NaI (10, 0.5)dTaON Pt (1.1)Pt (1.0, 0.5)dWO3 TiO2Pt (0.5)NaI (10, 0.5)dZrO2-TaON Pt (1.1)Pt (1.1)TiO2-Ta3N5 TiO2Ir (5)NaI (10, 0.5)dSrTiO3:Cr,Ta Pt (0.5)Pt (0.3)WO3 WO3 PtOx (0.5)NaI (10, 4)Coumarin- Pt (0.5)Pt (0.5)WO3 WO3 PtOx (0.5)IrO2 (0.5) and Rt (5)KI (5) Pt (0.5)BaTiO3:Rh absorberPt (0.25)WO3 WO3PtOx (0.5 (Pt))NaI (10)Table 5Reports of visible-light-driven wost strio3:RhPt (0.5)Bi2MOO6 WO3 NoneFeCl3 (2, 2.4 w/ H2SO4) FeCl2 (2, 2.4 w/ H2SO4)SrTiO3:Rh SrTiO3:Rh SrTiO3:Rh Ru (0.7)BiVO4 BiVO4 NoneNone Co(phen)3[SO4 (1, 7) SrTiO3:Rh Ru (0.7)BiVO4 BiVO4 NoneCophen)3[SO4 (1, 7)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Fabian, Hu, Singh, Houle, Hisatomi, Domen, Osterloh & Ardo, Energy Environ. Sci., 2015, 8, 2825

Approach: Milestones

Description of Milestone	Due Date (Quarter)	Percentage Complete
Task 1.0 Numerical modeling and simulati	ons of new reacto	r design
D1.1.1 Go/No-Go Decision: Using 80% less pipes and 80% less pumping energy, verify 1% η_{STH} . (AH, AI) – in silico, demonstrated sustainable reactors that require no pumps or pipes; reaction conditions could be sustained when operating at a 10% η_{STH} or smaller (See Technical Backup Slides)	August 1, 2016 (Q4)	100%
M1.1.3 To the model, add electromagnetic wave propagation, thermal effects, and multi-phase flow. (AH, AI) – each of these processes, plus determination of η_{STH} limits, has been implemented, at least in part	July 1, 2018 (" Q12" / end)	90%

Accomplishments: Maximum STH Efficiency

Accomplishments: Maximum STH Efficiency

Accomplishments: Back reactions

Rohini Bala Chandran Mechanical Engineer (LBNL Postdoc; Asst. Prof. at U. Mich.) Asymmetric redox shuttle electrocatalysis disfavors shunting reactions and will allow for efficient photocatalyst particles

Other Modeling and Simulation Results (not described in detail on slides elsewhere)

- Transport is more rapid with natural convection due to temperature gradients
- Models supported by experiments conducted on mixing due to temperature gradients
- Mie theory for photocatalyst optical effects (Maxwell's equations) is more accurate
- A single-photocatalyst-nanoparticle kinetic model is more accurate than bulk equations

Approach: Milestones

Description of Milestone	Due Date (Quarter)	Percentage Complete
Task 1.0 Numerical modeling and simula	ations of new reacto	r design
D1.1.1 Go/No-Go Decision: Using 80% less pipes and 80% less pumping energy, verify 1% η_{STH} . (AH, AI) – in silico, demonstrate sustainable reactors that require no pumps or pipes; reaction conditions could be sustained when operating at a 10% η_{STH} o smaller (See Technical Backup Slides)	d August 1, 2016 (Q4) r	100%
M1.1.3 To the model, add electromagnetic wave propagation, thermal effects, and multi-phase flow. (AH, AI) – each of these processes, plus determination of η_{STH} limits, has been implemented, at least in part	July 1, 2018 (" Q12 " / end)	90%

Task 2.0 Experimental evaluation of chemicals, materials, and reactors

M2.3.2 Demonstrate > 1% η_{STH} in electrode form factor. (AJ, AG) – 0.1% η_{STH} demonstrated using Rh:SrTiO ₃ and BiVO ₄ , which was limited by the HER photoelectrode; alternative HER particles, syntheses, and dopants are being explored, with limited success	May 1, 2017 (Q7)	30%
M2.4.1 Demonstrate > 3 L H ₂ (and > 1.5 L O ₂) from 8 hours of solar illumination. (AJ, AG, AH, AI) – built and tested model reactors with 10x smaller illumination area than final deliverable; detected H ₂ by mass spectrometry during visible-light excitation of a smaller reaction vessel; obtained apparent quantum yields that are consistent with state-of-the-art literature reports	July 1, 2018 (" Q12 " / end)	40%

Accomplishments: Rh:SrTiO₃ Photocatalysts

Accomplishments: Rh:SrTiO₃ Photocatalysts

<u>Sam Keene</u> Physicist (UCI Ph.D. Student)

Addition of Ru cocatalysts increases quantum yield for H_2 with decreased dependence on [Fe(III)]; hydroquinone is also a good donor

Other Experimental Results (not described in detail on slides elsewhere)

• Doped and co-doped SrTiO₃ materials were synthesized by various routes

- Low activity for the HER using PEDOT:PSS/La₅Ti₂CuS₅O₇ photoelectrodes
- Some electrochemical selectivity by the cocatalysts for the HER/OER

Accomplishments: Quantum Yield Comparisons

Rh:SrTiO₃ HER photocatalysts (405 nm excitation)

Redox species	no cocatalysts	with Ru cocatalysts	notes (* all with argon flow)
methanol (sacrificial) ~0%		0.6%	no pH adjustment
Fe(II)	0.3%	1.0%	same response at pH 1 – 2.4; no response at high pH
hydroquinone	~0%	0.09%	no pH adjustment; reducing pH had no effect
iodide	0%	0%	pH 7 and 11 investigated

Conditions	cocatalyst type	rate of H ₂ Production (µmol h ⁻¹)	quantum yield
reduced pressure	Pt	1.3, with methanol (sacrificial)	0.7%
nitrogen flow	Pt	3.7, with methanol (sacrificial)	2.1%
argon flow	<u>Pt</u>	4.4, with methanol (sacrificial)	<u>2.4%</u>
reduced pressure	Ru	2.0, with methanol (sacrificial)	1.1%

Mo:BiVO₄ OER photocatalysts (405 nm excitation)

Redo	x species	without cocatalysts	notes (* all with argon flow)
<u>Ag(I)</u>	(sacrificial)	<u>2.6%</u>	<u>no pH adjustment</u>
F	e(III)	1.5%	рН 2
qı	linone	0	no pH adjustment
	10 ₃ -	0	pH 7 and 11 investigated

Similar Q.Y. for OER (Mo:BiVO₄) and HER (Rh:SrTiO₃)

<u>Sam Keene</u> <u>William Gaieck</u> Physicist Materials Scientist (UCI Ph.D. Student) (UCI Ph.D. Student)

Response to previous year reviewers' comments

"When measured toward Hydrogen and Fuel Cells Program goals, the project is an order of magnitude away, and it is difficult to see a pathway for it to achieve overall goals." / "The project might drop the three-liter demonstration if it is a large distraction."

This project aimed to realize an increase in the STH efficiency of photocatalyst reactors using several new approaches. These approaches were not very successful and were further hampered by poor materials performance. Therefore, the focus in the final months of the project has shifted away from the 3 SLH_2 demonstration, and instead on understanding photocatalyst reactivity and disseminating this to the community. This project was funded under an Incubator FOA and so it was intended to be slightly higher risk.

"The researchers want to achieve a cost target of \$20/kg H₂ while achieving a 1% solar efficiency. Put another way, if they somehow miraculously achieved 20% efficiency, their costs would be \$1/kg H₂." / "Regarding modeling, the project might consider generating theoretical STH iso-contour plots with E_{q1} and E_{q2} on the x- and y-axes".

A techno-economic analysis using the H2A tool was conducted and it suggests that this new design is cost-effective. (The efficiency and cost do not scale linearly.) Results from our STH efficiency models were unexpected and will help guide future research.

"It is clearly time to put real particle suspensions in the baggie and see what happens. It would be best if they can find time to develop a model of the nanoparticles before they start fabricating them." / "What is really needed is better [PEC] materials".

For nearly one year, we have been measuring the STH efficiency from particle suspensions. The quantum yields are as expected based on the literature. A device physics model is currently under development for single particle photochemistry, but it is still incomplete.

Collaborations

Primary team members (funded)

- Lawrence Berkeley National Laboratory (Federal Lab) & Joint Center for Artificial Photosynthesis (DOE Hub)
 - » Adam Weber (sub-recipient; part of HydroGEN): Core numerical device-multi-physics modeling and simulation effort with unique expertise in coupled transport phenomena
- California Institute of Technology (University) & Joint Center for Artificial Photosynthesis (DOE Hub)

» Chengxiang Xiang (sub-contracted advisor; part of HydroGEN): Unique expertise in numerical device-multi-physics modeling and simulation of related photoelectrochemical devices

Additional team members with materials synthesis expertise (unfunded)

• Tokyo University of Science, Akihiko Kudo (Rh:SrTiO₃, BiVO₄)

Remaining Challenges and Barriers

Task 1.0 Numerical modeling and simulation of new reactor design

- Complete analyses for STH efficiency dependence on bandgap energies and potential of the redox shuttle.
- Complete complex fluid flow model to enable simulation of convection, e.g. pumping/mixing, thermal effects.
- Complete advanced optical phenomena model to more accurately model E&M and particle photophysics.
- Complete more accurate model for photocatalyst reactivity by modeling individual reactions on particles instead of baggie ensemble behavior as an ideal diode coupled to empirical Butler–Volmer electrokinetics.

Task 2.0 Experimental evaluation of chemicals, materials, and reactors

- Complete photocatalyst performance measurements and perform several parametric studies.
- Complete studies on selective electrocatalysis at electrodes for the HER/OER versus redox shuttle reactions.
- Complete analyses of temperature gradient effects on natural convection in prototypes.
- Observe redox shuttle concentrations in a prototype reactor that are consistent with numerical simulations under simulated day-night cycling as an indicator of the accuracy of the device physics models.
- Identify material(s) that operate at a rate consistent with > 1% η_{STH} in electrode form factor and as particle suspensions, as prerequisites to the original final deliverable of > 3 SLH₂ from 8 hours of solar illumination.

Any proposed future work is subject to change based on funding levels.

Proposed Future Work

<u>Project Objective</u>: **Experimentally validate** a *new design* for scalable solar-H₂ technologies using laboratory-scale prototype particle suspension reactors

Description of Milestone – Solution Due Date (Quarter)	Description of Milestone – Solution	Due Date (Quarter)	Percentage Complete
--	-------------------------------------	--------------------	------------------------

Task 1.0 Numerical modeling and simulation of new reactor design

M1.1.3 To the model, add electromagnetic wave propagation,		
thermal effects, and multi-phase flow – Introduce these phenomena		
into the master modeling framework and validate results from	July 1, 2018 (" Q12 " / end)	90%
the simulations; also determine the efficiency limits of these		
types of reactors as a function of redox shuttle		

Task 2.0 Experimental evaluation of chemicals, materials, and reactors

M2.3.2 Demonstrate > 1% η_{STH} in electrode form factor – Usingefficient thin-film and mesoporous electrodes withMay 1, 201photochemically deposited electrocatalystsoptimize conditions	7 (Q7) 30%
M2.4.1 Demonstrate > 3 standard L of H ₂ (and > 1.5 L of O ₂) from 8 hours of solar illumination – Using electrodes and free-floating particles, continue to assess the impacts that redox shuttles have on the rate of H ₂ evolution; introduce selective catalysis through interfacial engineering of light absorbers and catalysts; combine particles, prototype reactors, and redox shuttles and	/ end) 40%
measure rates of H ₂ evolution under solar illumination	Any proposed future work
* Additional funding to support follow-on work has not yet been obtained	is subject to change

Project Summary

<u>Project Objective</u>: **Experimentally validate** a *new design* for scalable solar-H₂ technologies using laboratory-scale prototype particle suspension reactors

Relevance	Techno-economic analyses of particle suspension reactors with side-by- side compartments suggest that H_2 cost may be rather inexpensive.
Approach	Stack the compartments to realize the tandem efficiency advantage and shorten the mass transport distance so that fewer pumps and pipes are required to circulate the electrolyte.
Technical Accomplishments	Using a validated device physics model, we numerically demonstrated stable operation of a tandem reactor operating at up to a 10% STH efficiency and assuming most relevant physics. We also synthesized and characterized efficient photoelectrodes consisting of Rh-modified SrTiO ₃ , WO ₃ , or BiVO ₄ and for each of these, demonstrated photocurrents at a rate consistent with a 1% STH efficiency. We also developed prototype reactors and techniques to locally assess redox shuttle concentration <i>in situ</i> . We also demonstrated state-of-the-art quantum yields from our materials as nanoparticle suspensions .
Collaborations	Weber / Xiang for numerical modeling; Kudo for materials synthesis.
Proposed Future Work	Add additional device physics to the numerical models and synthesize high quality metal-oxide particles that attain a large quantum yield.

Technical Backup Slides

Relevance: Motivation

Table 5 Summary of all direct capital expenditures and installation costs for the four different 1 TPD net H₂ production plant modules

	Type 1, single be suspension	ed particle	Type 2, dual bed suspension	l particle	Type 3, fixed par	nel array	Type 4, tracking concentrator arr	ay
Reactor subassembly	Baggies	\$133 077	Baggies	\$791 250	← Half of this c to PVC pipe	cost is due s & pumps	Tracking/ concentrating	\$2 035 420
	Particles	\$22 679	Particles	\$40 798	PEC cells	\$8 238 271	PEC cells	\$1 072 904
	Other	\$56 501	Other	\$60 886	Other	\$105 074	Other	\$26 886
Reactor subassembly total	\$212 257		\$892 934		\$8 343 345		\$3 135 209	
Gas processing	Compressor	\$526 302						
subassembly	Condenser	\$13 765	Compressor	\$315 884	Compressor	\$759 481		
-	Intercoolers	\$30 655	Condenser	\$10 626	Condenser	\$16 607	Condenser	\$7098
	PSA	\$107 147	Intercoolers	\$23 334	Intercoolers	\$36 389	Piping	\$26 673
	Piping	\$6416	Piping	\$6811	Piping	\$104 861		
Gas processing subassembly total	\$684 283		\$356 654		\$917 338		\$33 771	
Control system total	\$173 944		\$440 826		\$319 862		\$279 774	
Direct capital cost total	\$1 070 485		\$1 690 414		\$9 580 545		\$3 448 755	
Reactor cost per capture area (uninstalled)	\$2.21 per m ²		\$6.55 per m ²		\$154.95 per m ²		\$92.41 per m ²	
System Cost per capture area (uninstalled)	\$19.76 per m ²		\$18.46 per m ²		\$204.81 per m ²		\$126.51 per m ²	
Installation	Excavation Baggies/piping Gas processing Control system	\$46 259 \$21 534 \$203 361 \$52 183	Excavation Baggies/piping Gas processing Control system	\$124 672 \$291 441 \$104 953 \$132 248	Panels/reactor Piping Gas processing Control system	\$1 076 962 \$30 843 \$243 743 \$95 959	Reactors Piping Gas processing Control system	\$746 385 \$10 521 \$2129 \$83 932
Installation cost total	\$323 337		\$653 314		\$1 447 507		\$842 967	
Total capital cost with	\$1 393 822		\$2 343 728		\$11 028 052		\$4 291 722	

Directed Technologies, Inc., DOE Report, 2009 & Pinaud, ..., <u>Ardo</u>, ..., Jaramillo, *Energy Environ. Sci.*, 2013, 6, 1983 DOE-EERE, H2A Analysis, http://www.hydrogen.energy.gov/h2a_production.html

Prior Accomplishments: 10% STH Model

Steady-periodic conditions for <u>10% STH efficiency</u> with zero convection (indefinite operation)

<u>Rohini Bala Chandran</u> Mechanical Engineer (LBNL Postdoc; Asst. Prof. at U. Mich.) Beer's Law for optimal light absorber photodiodes State-of-the-art electrocatalysis & Butler–Volmer parameters Light absorption by IO_3^{-}/I^{-} redox shuttle within solubility limits Redox shuttle transport governed by diffusion and drift Non-H⁺ counterion for redox shuttle (adjustable pH) Separator thickness and porosity limit H₂/O₂ crossover

UNIVERSITY of CALIFORNIA • IRVINE

2

Prior Accomplishments: Lab Prototypes

Separators assessed in leak-free Plexiglas prototype reactor (4 x 4 x 8")

<u>Kevin Tkacz</u> Materials Scientist (UCI Ph.D. Student)

Prior Accomplishments: Separators

<u>Kevin Tkacz</u> Materials Scientist (UCI Ph.D. Student)

	Dialysis Membrane	Snyder ultrafiltration Membrane	Genpore Plastic	Polyvinyl Membrane
Transparent		Opaque	Opaque	
Dye Diffusion	Slow		No diffusion	
NP diffusion	Some leakage	-	-	Macroscopic Holes
Physically Robust				Fell apart

A suitable nanoporous separator has not been identified

Prior Accomplishments: PEC Electrodes

<u>Houman Yaghoubi</u> Electrical Engineer (UCI Postdoc; Senior Scientist at Genalyte)