

Novel Chalcopyrites for Advanced Photoelectrochemical Water-Splitting

Nicolas Gaillard University of Hawaii June 13th 2018

PD162

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Novel Chalcopyrites for Advanced Photoelectrochemical Water-Splitting

- Lead PI: Nicolas Gaillard (University of Hawaii)

- Co-PIs: Clemens Heske (UNLV) Thomas Jaramillo (Stanford)

Project Vision

Strengthen **theory**, **synthesis and advanced characterization "loop"** to accelerate development of efficient materials for PEC H₂ production.

Project Impact

Innovative technologies to synthesize and integrate existing or exploratory chalcopyrites into low-cost PEC devices. These techniques could be extended to other material classes.

Award #	EE0008085
Start/End Date	10/01/2017 - 09/30/2020
Year 1 Funding*	\$280,172

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE)

Approach – Technical background

The promise of chalcopyrite-based PEC systems

1. Chalcopyrites can generate high photocurrent density

2. Low-cost processes available

Chalcopyrite PV module cost: \$150/m²

3. Demonstrated water splitting with co-planar devices

4. Chalcopyrites are bandgap (E_G) tunable

Chalcopyrites compatible with tandem architecture

Take home message: chalcopyrites are excellent candidates for PEC water splitting. Novel wide bandgap (E_q) absorbers with improved optoelectronic properties needed for high efficiency <u>tandem cells</u>.

Project motivation

- UH/UNLV/Stanford/NREL/LLNL funded by EERE (2014) to identify promising chalcopyrites for PEC H₂.
- New absorbers, interfaces and surface protection schemes were evaluated.
- Key barriers identified with these systems will be addressed in this new project.

Key Impact

Metric	State of the Art	Proposed
STH Efficiency	4%	>10%
Durability	350 hrs	>1,000 hrs

Technical barriers addressed in this project

- Synthesis and Manufacturing barrier (AJ): wide bandgap chalcopyrites are difficult to make with vacuum-based processes.
- 2 Materials Efficiency barrier (AE): chalcopyrites interface energetics are not ideal for PEC water splitting.
- 3 Integrated device configuration barrier (AG): there is no known method to make efficient chalcopyrite-based tandems.
- Materials Durability barrier (AF): coating ultra-thin protective layers on 'rough' polycrystalline chalcopyrites is challenging.

Approach – Scope of work for budget period 1

Task 1 - Modeling and Synthesis of Chalcopyrite Photocathodes

To address **Synthesis and Manufacturing (AJ)** and **Materials Efficiency (AE)** barriers, we model and develop new alloying and doping techniques to improve chalcopyrites efficiency.

Task 2 - Interfaces Engineering for Enhanced Efficiency and Durability

To address **Materials Efficiency (AE)** and **Materials Durability (AF) barriers**, we develop new interfaces to tune chalcopyrite "energetics" and improve their stabilities during PEC water splitting.

Task 3 - Hybrid Photoelectrode Device Integration

To address **Integrated device configuration barrier (AG)**, we develop a unique "transfer" method to create semi-monolithic chalcopyrite-based tandem devices.

Integrated Theory, Analysis, Synthesis and Testing

Take home message: our program is developing materials, methods and models addressing all fundamentals of photoelectrochemistry to accelerate the development of water splitting materials.

Approach – Innovation highlight #1

1) Novel chalcopyrites alloying using printing techniques

Synthesis and Manufacturing barrier (AJ): our models revealed that low photovoltage in CuInGaS₂ originates from Ga_{Cu} defects. Alternative Ga-free wide bandgap Cu(In,**AI**)Se₂, Cu(In,**B**)Se₂ identified by theory. However, these materials are too challenging to make by co-evaporation (aluminum thermal expansion can crack evaporation crucibles and boron evaporation requires extreme temp.).

Proposed innovation: replace evaporation with "printing" technique to synthesize Cu(In,Al,B)Se₂ using molecular inks containing all necessary constituents (CuCl, InCl₂, AlCl₃/BCl₃).

 \rightarrow **Proof of concept:** solution processed Cu₂ZnSnSe₄ solar cells (funding agency: ONR)

→ This approach lowers material cost and provides a viable path to meet DOE's target of \$60/m².

Approach – Innovation highlight #2

2) Innovative tandem device integration schemes

Integrated Device Configurations barrier (AG): materials compatibility (e.g. temperature) is the biggest challenge in multi-junction device integration. With current chalcopyrite PV technology, it is impossible to fabricate high efficiency monolithic multi-junction devices by directly depositing a wide-bandgap photocathode onto a narrow bandgap PV driver.

Proposed innovation: exfoliation of finished PEC cells and bonding onto fully processed PV drivers to create a semi-monolithic tandem device.

 \rightarrow **Proof of concept:** 1 μ m thick CIGS layer successfully "peeled" from substrate using polymer

→ This concept could be extended to other low-temp. PV classes (e.g. a-Si, Perovskites)

Relevance & Impact – Techno-economics of chalcopyrite-based PEC systems

Ultimate goal

(Semi) Monolithic hybrid device

Material cost: 100\$/m², STH 5-10%

Material cost: 200\$/m², STH target > 15%

Material cost: 60\$/m², STH target = 25%

Note: \$1.95 \$/kg H₂ achievable with both 25% STH and 10-year lifetime

Take home message: the wide E_g chalcopyrites developed under this program are compatible with the tandem approach and can meet the efficiency requirements for PEC H₂ production at a cost < 2\$/kg H₂.

HydroGEN: Advanced Water Splitting Materials

Relevance & Impact – Leveraging EMN capability nodes

Computational Materials Diagnostics and Optimization (T. Ogitsu).

- → Role: modeling of materials optoelectronic properties (Eg vs composition, defects chemistry...etc).
- → Benefit to this program: defines synthesis conditions and thermodynamic stability of novel chalcopyrites.
- → Broader impact for HydroGEN: LLNL models can be used to predict bulk/interfaces of future materials for PEC water splitting and other H₂ production pathways.
- I-III-VI Compound Semiconductors for Water-Splitting (K. Zhu)
- \rightarrow **Role:** synthesis of high-purity PEC and PV chalcopyrite materials (CuGa₃Se₅ and CuInGaSe₂).
- → Benefit to this program: "ideal" vacuum-based chalcopyrites to evaluate new strategies (Na doping).
- → Broader impact for HydroGEN: materials developed could be used for other H₂ production pathways (i.e. PV/electrolysis).
- High-Throughput Thin Film Combinatorial Capabilities (A. Zakutayev)
- → Role: screening of n-type buffer materials (e.g. graded MgZnO: 40 compositions on 1 CIGS sample).
- → Benefit to this program: accelerates material discovery for improved interface energetics (buried junction).
- → Broader impact for HydroGEN: comprehensive library of optical, electronic and microstructural properties of new multi-compound materials made available to the scientific community via the HydroGEN Datahub.
- Corrosion Analysis of Materials (T. Deutsch)
- → **Role:** supports development of surface passivation against photo-corrosion.
- → Benefit to this program: provide access to unique instrumentation (e.g. ICPMS).
- → Broader impact for HydroGEN: assessment of durability test protocols (e.g. fixed current vs. fixed potential).

P.P. Rajbhandari, Sol. Energ. Mat. & Sol. Cells 159 (2017)

)

Accomplishments – Milestones and Go/No-Go criteria for budget period 1

→ All milestones timely met and project well on track to meet all Go/NoGo decision points for Y1

Task #	Subtask Title	Milestone ID	Description	Significance to Project	Anticipated Quarter	Status
1	1.1-Defects passivation	Milestone #1	A printed polycrystalline chalcopyrite thin film material made of grains at least 500 nm across and with impurity concentration less than 15%.	Demonstrates viability of the "printing" technique to fabricate chalcopyrite materials.	Q1	100%
3	3.1-Conductive Polymer	Milestone #2	Produce a nanowire-based composite demonstrating a sheet resistance below 200 Ω /sq and transparency > 70%.	Transparent conductive binder required in the PEC layer exfoliation/transfer concept (semi-monolithic tandem).	Q2	100%
2	2.1-Interface: durability	Milestone #3	Stabilized chalcopyrite photocathode that retains 90% of its copper content after 100 hrs of continuous operation to achieve an initial photocurrent density of 8 mA/cm ² under simulated AM1.5G illumination.	This study will provide insights into the degradation mechanism of chalcopyrites photoelectrodes.	Q3	In progress
1	1.2-Printed Chalcopyrites	Go/No-Go #1/2	A solution-processed Culn(S,Se) ₂ -based PV device with a short-circuit photocurrent density corresponding to at least 70% of the absorber's theoretical limit and free-electron losses (Eg – Voc.q) less than 600 mV.	Further validates the feasibility of the proposed "printing" technique. Ternary CuInSe ₂ serves as baseline materials for quaternary CuInBSe ₂ and CuInAISe ₂ (Y2 ^(#)).	Q4	97%
2	2.1-Interface: durability	Go/No-Go #2/2	Demonstrate 500 hrs stability in a photoelectrode operating under simulated AM1.5G illumination at a fixed potential that achieves an initial photocurrent of 8 mA/cm2 and does not drop below 5 mA/cm2 over the duration of the test.	Validates the proposed protection strategy (e.g. TiO ₂ /MoS ₂) for durable PEC H ₂ production	Q4	80%

#: Any proposed future work is subject to change based on funding levels

HydroGEN: Advanced Water Splitting Materials

Accomplishments – Task 1: Modeling and Synthesis of Chalcopyrite Photocathodes

Material

barrier (AJ)

1.1) Theoretical modeling (LLNL node)

a. Defect identification in known gallium-based wide Eg chalcopyrites (e.g. CulnGaS₂)

b. Identifying new gallium-free wide ${\rm E}_{\rm g}$ chalcopyrites

Broader impact to community: LLNL's modeling provides critical information on absorber's thermodynamic stability, defect chemistry and establish the optoelectronic properties of new material candidates.

b. Spectroscopic analysis of printed CuInSe₂ (UNLV, cross-cutting activity)

Unusual calcium detected both at CuInSe₂ surface and in bulk!

Next step: identify if the origin of this foreign element and assess its impact on printed chalcopyrites.

Accomplishments – Task 1: Modeling and Synthesis of Chalcopyrite Photocathodes

1.2) Chalcopyrite "printing" using molecular inks **GNG 1/2: 97%** c. Absorber photo-conversion efficiency validation (NREL CIGSe node) Current density (mA/cm²) Quantum efficiency (%) $V_{00} = 480 \text{ mV}$ =1.10 eV 80 ITC $J_{m} = 32.7 \text{ mA/cm}^{2}$ ZnO dEQE/d 60 PCE = 8.4% CdS-Culn(S,Se) 40 -20 $J_{sc} = 32.7 \text{ mA/cm}^{2}$ Printed Culn(S,Se), 20 solar cells -0.2 0.0 0.2 0.4 0.6 600 800 1000 400 1200 Wavelength (nm) Voltage (V)

Device ID	Voc (mV)	Jsc (mA/cm^2)	FF (%)	Eff. (%)
A1-1	406	28.6	53.1	6.2
A1-2	439	31.7	59.4	8.3
A1-3	443	32.1	57.6	8.2
A1-4	480	32.7	55.7	8.5
A2-1	386	23.5	42.2	3.8
A2-2	416	31	53.2	6.8
A2-3	395	30.1	52.6	6.3
A2-4	361	19.8	42.1	3.0
A2-5	417	27.6	52.2	6.0
A2-6	427	31.5	59.6	8.0
A2-7	416	31.3	59.4	7.7
A2-8	396	29.2	53.7	6.2
Average	415.2	29.1	53.4	6.6
Std dev	30.7	3.9	5.9	1.8
Rel. err.	0.07	0.13	0.11	0.27

Solid-state analyses validate "printing" approach:

- J_{sc} of best cell (A1-4) > 70% J_{max} of 1.1eV absorber.
- → 100% of GNG criteria on photocurrent
- Free-electron losses of best cell cell (A1-4) = 620 mV.
- \rightarrow 97% of GNG criteria on open-circuit voltage

Broader impact to community: the "printing" approach offers a simpler method to develop multi-compound materials that are normally challenging to synthesize by vacuum-based techniques.

HydroGEN: Advanced Water Splitting Materials

Efficiency

barrier (AE)

Accomplishments – Task 2: Interfaces for Enhanced Efficiency & Durability

Durability barrier (AF)

2.2) Protection against photo-corrosion (Stanford-NREL's Corrosion)

GNG 2/2: 80%

Broader impact to community: strategies identified to protect chalcopyrites from photo-corrosion applicable to other material classes. Provides experimental starting points to '2B benchmarking' team to establish future durability protocols.

Accomplishments – Task 3: Hybrid **Photoelectrode Device Integration**

3.1) Transparent conductive (TC) binder for semi-monolithic tandem PEC integration

a. Intrinsic properties of binder-less TC layer

b. Properties of AgNW/polyester resin TC binder

Stacked architecture

Stack (contact area \simeq 4 cm ²)	R (ohm)
FTO/FTO (for reference)	32
Glass/AgNW/AgNW/Glass	50
Glass/AgNW/ resin/ AgNW/Glass	150

Interconnectivity between AgNW in a stacked configuration using polyester resin demonstrated.

Broader impact to community: provides a technique to integrate dissimilar material systems as well as a viable path towards a device that can meet DOE's cost target of $\frac{2}{kg}$ H₂ or less.

Milestone #2: 100%

Device

barrier (AG)

As conductive & transparent as commercial FTO.

Glass substrate

<T%> = 92%

800

800

1000

1000

1200

1200

Collaboration – Interactions with EMN project node experts to date

→ Active interactions between academic teams and EMN nodes with regular communication regarding samples exchange and collected data.

Task #	Academia-Nodes Interactions	Specific activity	Goal	Impact to Project	Barrier
1	UH - LLNL theory Node	Data exchange (Raman spectra, solid state electrical measurements, phase diagrams and defects energy mappings).	Calculate the energy and prevalence of point defects.	This work provides guidance for future passivation strategies (i.e. Alkali doping).	AE
1	UH - NREL I-III-VI Node	Sample exchange (CuInSe ₂ solid state devices).	Measure photo- conversion properties of printed CuInSe ₂	Validates the printing method to be used to create quaternary chalcopyrites.	AE, AJ
1	UH - NREL Corrosion Node	Sample exchange (1.8eV GalnP ₂ preference photodiode).	Calibrate UH solar simulator for wide E _G chalcopyrite PEC testing	In line with benchmarking efforts, this ensure proper characterization of the proposed chalcopyrite systems.	AE
2	Stanford - NREL I-III-VI Node	Sample exchange (CuGa ₃ Se ₅).	Evaluate intrinsic stability of Cu-poor chalcopyrites	Clarify the role of chalcopyrites composition on durability.	AF
2	Stanford - NREL Corrosion Node	Sample exchange (CuGa _x Se _y).	Measure fraction of Cu dissolved in electrolyte during PEC testing (ICPMS)	Elucidate the primary mechanism of photocorrosion in chalcopyrites.	AF
2	NREL I-III-VI Node - NREL Combinatorial Node	Sample exchange (CuGa ₃ Se ₅).	First combinatorial study: Deposition of composition graded MgZnO buffer	Identify the optimum energetics an n-type buffer should have for a given wide E _G chalcopyrite in order to increase the photovoltage.	AE

Collaboration – Collaboration with crosscutting '2b' benchmarking team

- N. Gaillard, C. Heske, T. Jaramillo, T. Ogitsu and T. Deutsch have been participating in the development of PEC standards since 2008.
- Inputs for the next round of methods and protocols shared with PEC '2b' benchmarking team through the provided questionnaires.
- Our team will be participating to the upcoming "benchmarking" workshops to be held in conjunctions to the ECS Seattle and MRS Boston 2018 meetings.

REVIEW

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols

Zhebo Chen and Thomas F. Jaramillo^{a)} Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025 Todd G. Deutsch^{b)}

Hydrogen Technologies and Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401

Alan Kleiman-Shwarsctein Department of Chemical Engineering Santa Barbara, California 93106-508

Arnold J. Forman Department of Chemistry and Bioche Santa Barbara, California 93106-508

Nicolas Gaillard^{c)} Hawaii Natural Energy Institute, Uni

Roxanne Garland Hydrogen, Fuel Cells and Infrastruct Washington, District of Columbia 20

Kazuhiro Takanabe Department of Chemical System Eng Tokyo 113-8656, Japan

Clemens Heske Department of Chemistry, University

Mahendra Sunkara Department of Chemical Engineering

Eric W. McFarland Department of Chemical Engineering Santa Barbara, California 93106-508

Kazunari Domen Department of Chemical System Eng Tokyo 113-8656, Japan

Eric L. Miller^{e)} Hawaii Natural Energy Institute, Uni

John A. Turner^{e)} and Huyen N. E Hydrogen Technologies and Systems Golden, Colorado 80401

SPRINGER BRIEFS IN ENERGY

Zhebo Chen Huyen N. Dinh Eric Miller

Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols

Collaboration – Benefits of information provided into the HydroGEN data-hub

Following our "**theory, synthesis and advanced characterization feedback loop**" philosophy, we aim at developing material and interface models that will accelerate development of renewable H₂ production technologies.

During phase 1, data uploaded on the HydroGEN-hub include primarily bulk properties of chalcopyrite absorbers and n-type buffers, providing the community with useful information regarding:

- Theoretical predictions related to defect chemistry and possible passivation strategies of other absorbers.
- Fundamental properties of multi-compound buffers, including optical spectra (bandgap) and microstructure (crystallographic).
- Surface and bulk spectroscopy techniques and gathering data on the purity and chemical nature of water splitting materials.

During phase 2^(#), we will focus our efforts on interface properties and further develop our phase 1 models to predict conduction and valence band alignment (a.k.a. "energetics"), compare them against spectroscopic measurements and ultimately PEC water splitting device performance.

10 eV

Task 1 - Modeling and Synthesis of Chalcopyrite Photocathodes

Sub-task 1.1 – defect passivation (known Ga-based materials): test Theory Node predictions on alkali passivation with standard vacuum-processed wide bandgap chalcopyrite.

Sub-task 1.2 – printed chalcopyrites (new systems): synthesize Cu(In,AI)Se₂ and/or Cu(In,B)Se₂, report on their optical and PEC properties.

- \rightarrow Intended outcomes: wide E_g chalcopyrites with photocurrent density greater than 80% of their theoretical limit.
- \rightarrow IMPACT: produce materials compatible with 20% STH efficiency or higher.

Task 2 - Interfaces Engineering for Enhanced Efficiency and Durability

Sub-task 2.1 – interface energetics: establish MgZnO composition with best energetics for CuGa₃Se₅. Sub-task 2.2 – interface durability: further improve the deposition of MoS_2/TiO_2 protective layers.

 \rightarrow Intended outcomes: wide E_g chalcopyrites with **photo-voltage over 1V** capable of water splitting for **750 hrs**.

 \rightarrow IMPACT: establish a path for un-assisted and durable PEC water splitting.

Task 3 - Hybrid Photoelectrode Device Integration

Sub-task 3.1 – conductive polymers: further develop the concept of conductive binder and test alternative media. Sub-task 3.2 – semi-monolithic HPE device: test sub-components of semi-monolithic device, using TC binder as top contact of PV drivers or back contact of PEC electrodes.

→ <u>Intended outcomes</u>: proof of concept of semi-monolithic device with functional sub-components
 → IMPACT: create the first efficient chalcopyrite-based tandem device.

Project Summary

<u>High-level project goal</u>: Strengthen **theory, synthesis and advanced characterization "feedback loop"** to accelerate development of chalcopyrites for efficient PEC H₂ production.

Technical objectives:

- To address Synthesis and Manufacturing and Materials
 Efficiency barriers, we model and develop new alloying and doping techniques to enhance chalcopyrites efficiency.
- To address Materials Efficiency and Materials Durability barriers, we develop new interfaces to improve chalcopyrites surface energetics and chemical stability during PEC operation.
- To address **Integrated device configuration** barrier, we develop a unique method with "transferable" PEC films to create semi-monolithic chalcopyrite-based tandems.

<u>Benefits for HydroGEN and scientific community</u>: our models can be used to predict the properties of future PEC bulk (optical absorption, thermodynamic stability, defect chemistry) and interface (band-edges offsets) properties.

Transferable PEC thin films

Technical Back-Up Slides

Accomplishments - Task 2: Interfaces Engineering for Enhanced Efficiency and Durability

2.1 Improving chalcopyrites energetics (UH-NREL's Combinatorial and I-III-VI nodes)

Combinatorial deposition of (Zn,Mg)O:Ga thin films

Synthesis

- (Zn,Mg)O:Ga thin films deposited from ZnO, Mg, Ga₂O₃ targets in Ar/O₂.
- Substrates: SiO₂ heated to 100C or 200C.

Characterization

- XRD patters are all (0002) oriented wurtzite ZnO, no MgO or Ga₂O₃ peaks observed.
- With increasing Ga/(Ga+Zn) atomic ratio
 - the ZnO (0002) peak intensity reduces and shifts towards lower angle.
 - Conductivity decreases, indicating that there may be too much Ga in the film.

Next steps

- Quantify Mg content using RBS
- Determine conduction band shift
- Deposit on CuGa₃Se₅ wide bandgap absorbers

HydroGEN: Advanced Water Splitting Materials