



# Mixed Ionic Electronic Conducting Quaternary Perovskites: Materials by Design for STCH H<sub>2</sub>

P. I. Name: Ellen B. Stechel Organization: Arizona State University Co Presenter Name: Sai G. Gopalakrishnan Date: 13 June 2018

Project ID: pd168

This presentation does not contain any proprietary, confidential, or otherwise restricted information









Lawrence Livermore National Laboratory





# **Project Overview**

#### **Project Partners**

PI, Arizona State University (E. Stechel) Co-PI, Princeton University (E. Carter & S. Gopalakrishnan

### **Project Vision**

Accurate (enough) first principles calculations of the oxygen chemical potential for complex mixed ionic electronic (off-stoichiometric) up to doubly substituted perovskite solid solutions from which we can extract the thermodynamics and provide inverse design principles.

### **Project Impact**

We aim to contribute to materials discovery for improved STCH materials. We aim to offer strategies to boost solar to hydrogen thermal efficiency, as well as to provide experimentalists with crucial input to synthesize, validate, and perform further testing on promising candidates. We aim to determine best possible, thermodynamically consistent targets depending on operating conditions to guide systems design.

| Award #                   | EE0008090  |  |  |  |
|---------------------------|------------|--|--|--|
| Start Date                | 10/01/2018 |  |  |  |
| Yr 1 End Date             | 03/31/2019 |  |  |  |
| Project End Date          | TBD        |  |  |  |
| Total DOE Share           | \$629,748  |  |  |  |
| Total Cost Share          | \$72,464   |  |  |  |
| Yr 1 Funding <sup>*</sup> | \$249,971  |  |  |  |
|                           |            |  |  |  |



HydroGEN: Advanced Water Splitting Materials



# **Approach- Summary**

#### **Project Motivation**

Inverse design criteria to optimize the search for better materials for STCH do not exist – want to determine the optimum  $\Delta H$  of reduction while achieving maximum vacancy solubility windows.

| Key Impact     |                                                                 |                                                                                                                  |  |  |  |  |
|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Metric         | State of<br>the Art                                             | Proposed                                                                                                         |  |  |  |  |
| T <sub>R</sub> | Reduction<br>temperature<br>> 1500℃                             | Reduction<br>temperature<br>< 1450℃                                                                              |  |  |  |  |
| Δδ             | Reduction<br>Capacity<br>$\Delta\delta \sim 0.03$<br>per cation | Reduction Capacity<br>$\Delta \delta > 0.15$ per cation<br>Or best possible at<br>practical partial<br>pressures |  |  |  |  |
| Error          | N/A                                                             | 20% accurate<br>chemical potentials<br>over relevant<br>operating window                                         |  |  |  |  |

#### **Barriers**

- **Direct comparison** theory & experiment is difficult
- **Open shells and disorder**, difficult to calculate
- Calculating **CALPHAD** models without experimental input is very difficult.
- Determining the "equation of state" offstoichiometry δ as a function of the oxygen chemical potential has never been attempted.

#### Partnerships

Dean Emily Carter, Princeton University Dr. Sai Gopalakrishnan, Princeton Univ. Node Experts at SNL and NREL **Expertise**: developing new DFT+U capabilities, complex oxides, calculating chemical potentials in complex disordered materials, uncertainty quantification **Specific capabilities:** functionals (SCAN+U), Computational CALPHAD (and cluster model as needed)

# Approach: Innovation Background



TR and WS reactions are thermodynamically feasible, if,

$$\Delta G_{TR} = \left(\frac{1}{\delta}\right) G^{MO_{x-\delta}} + \left(\frac{1}{2}\right) G^{O_2} - \left(\frac{1}{\delta}\right) G^{MO_x} \le 0$$
  

$$\Delta G_{WS} = \left(\frac{1}{\delta}\right) G^{MO_{x-\delta}} + G^{H_2O} - \left(\frac{1}{\delta}\right) G^{MO_x} - G^{H_2} \le 0$$
  
Both expressions have solid  
and gas phase energetics.  
We decouple the solid from  
the gas-phase  
thermodynamics?

HydroGEN: Advanced Water Splitting Materials



## **Approach: Innovation Thermal reduction energetics**

$$\left(\frac{1}{\delta}\right)MO_x \rightarrow \left(\frac{1}{\delta}\right)MO_{x-\delta} + \left(\frac{1}{2}\right)O_2$$
 Target T:  $\leq 1673.15$  K, pO<sub>2</sub>:  $\geq 10$  Pa

The reduction reaction is favorable if the Gibbs energy of the reaction is negative

$$\Delta G_{TR} = \left(\frac{1}{\delta}\right) G^{MO_{x-\delta}} + \left(\frac{1}{2}\right) G^{O_2} - \left(\frac{1}{\delta}\right) G^{MO_x} \le 0$$
Rearrangement of terms
$$\left(\frac{1}{2}\right) G^{O_2} \le \left(\frac{1}{\delta}\right) G^{MO_x} - \left(\frac{1}{\delta}\right) G^{MO_{x-\delta}}$$
Chemical potential of oxygen in gas stream
$$\mu_0^{O_2,gas} = \left(\frac{1}{2}\right) G^{O_2} = \frac{1}{2} (H^{O_2} - TS^{O_2} + RT \ln pO_2)$$
H and S are T dependent
$$H \text{ and } S \text{ are } T \text{ dependent}$$

$$H \text{ and } S \text{ are } T \text{ dependent}$$

$$H \text{ and } S \text{ are } T \text{ dependent}$$

$$H \text{ and } S \text{ are } T \text{ dependent}$$

 $\mu_0^{O_2,gas} \le \mu_0^{MO_x - MO_{x-\delta}, solid}$ Reduction is spontaneous, if

HydroGEN: Advanced Water Splitting Materials

H and

# **Approach: Innovation** Calculate oxygen chemical potential $(\mu_0)$

- $\mu_0$  of gas phase components (H<sub>2</sub>O, H<sub>2</sub>, and O<sub>2</sub>) can be obtained from experimental data
  - Available at the National Institute of Standards and Technology (NIST)
- $\mu_0$  of the solid phase requires calculating the Gibbs energy as a function of temperature
  - Density functional theory (DFT+U) based approaches can yield good estimates for enthalpy, but estimating entropy is non-trivial
  - We aim to construct "simple" thermodynamic models to reasonably estimate Gibbs energies.
- Validate models with available data
  - Systems of interest:  $CeO_2$ ,  $(Ce,Zr)O_2$ ,  $La_{1-x}Sr_xMnO_3$ , other perovskites (up to doubly substituted) and possibly fluorites

# Approach Innovation: Comprehensive uncertainty management

- Overall goal is to predict thermodynamic efficiency given the thermodynamics of a material and a fixed operating cycle with specified uncertainty.
- SNL UQ (Uncertainty Quantification) HydroGEN node determines confidence needed in the components that feed into the efficiency evaluation, whether it comes from experiment or computation or a combination.
  - Bayesian model inference for thermodynamic behavior (oxygen chemical potential) of the redox active materials
  - Bayesian model comparison for thermodynamics
  - Propagation of parametric uncertainty into thermodynamic properties is ongoing

# Approach: Innovation Bayesian inference of thermodynamic fits

Bayes' rule updates prior belief in parameter values
 (λ) with data (δ), to obtain posterior belief in the parameter values

$$p(\lambda|d,\mathcal{M}) = \frac{p(d|\lambda,\mathcal{M})p(\lambda,\mathcal{M})}{p(d|\mathcal{M})}$$

• Used transformed variables  $(\delta, pO_2, T) \rightarrow (z, u, \beta)$ 

$$z = \frac{z_{ref} + f_{10}(1-\beta) + f_{20}u + f_{30}u(1-\beta)}{1 + f_{11}(1-\beta) + f_{21}u + f_{31}u(1-\beta)}$$



 $z = -ln(\delta);$ 

Model A:  $f_{11} = f_{21} = f_{30} = f_{31} = 0$ Model B1:  $f_{11} = f_{30} = f_{31} = 0$ ; Model B2:  $f_{30} = f_{31} = 0$ Model C: all parameters are active

• Bayesian inference done in  $(\delta, p, T)$  space, using a Gaussian noise model on  $\delta$ 



- Efficiency of the hydrogen production pathway is of critical importance to achieving ≤ \$2/kg.
  - This project makes a direct connection between computational thermodynamics, the efficiency, and management of the uncertainties.
- "Good fit" with the HydroGEN Consortium R&D model
  - Uncertainty Quantification (SNL) in Computational Models of Phys. Sys.
    - Facilitate answering the question how accurate in measurements or computation is accurate enough to meaningfully inform materials discovery
  - Controlled Materials Synthesis and Defect Engineering (NREL)
    - Facilitate validation of DFT+U predictions and further testing of candidates
  - HT-XRD and Complementary Thermal Analysis (SNL)
    - Facilitate experimental determination of the oxygen chemical potential,  $\mu_{0}$
  - Laser Heated Stagnation Flow Reactor (SNL)
    - Facilitate a potentially faster but less accurate determination of  $\mu_{\text{O}}$
- Enhances the broader consortium by providing a missing link between computation, experiment, efficiency, and cost of  $H_2$

# Accomplishments & Progress

- Go/No-Go due 3/31/2019
  - Predictive power demonstrated
  - two candidates with thermodynamic response maps completed and submitted to the consortium; Synthesized in collaboration with NREL Node
  - X-ray diffraction (SNL) measures structure, phase purity, and lattice constants
  - Compare to computational predictions with measured lattice constants
    - Goal 10% agreement
  - $\mu_0$  calculated and compared with experiment (two SNL Nodes)
    - Goal: 20% agreement between derived thermodynamics and inferred from the measurements
    - Enthalpy and entropy of reaction rigorously from derivatives of  $\mu_0$
- Significance: Direct comparison between theory and experiment through one function (the chemical potential), which can be directly inferred from and calculated from DFT+U.
  - The GNG provides confidence in using computation for screening
  - Making the connection to an operating cycle connects materials to technology.
  - The Uncertainty Quantification answers the question how good do measurements or computation have to be to differentiate between materials.
- On track to providing a screening tool that predicts STH efficiency and thermodynamic constraints on the operating cycle from computation.

### **Accomplishments & Progress** CeO<sub>2</sub>: DFT+U vs Experiments, reducing conditions



### **Accomplishments & Progress** CeO<sub>2</sub>: DFT+U vs. Experiment, oxidizing conditions



# Accomplishments & Progress Zr-doped CeO<sub>2</sub>: DFT+U vs. Experiment

#### Oxygen off-stoichiometry

| Composition             | Reducing conditions<br>(1673 K, 10 Pa) |       | Co-current Oxidizing<br>conditions<br>(873 K, pH <sub>2</sub> O/pH <sub>2</sub> = 9) |       |  |  |
|-------------------------|----------------------------------------|-------|--------------------------------------------------------------------------------------|-------|--|--|
|                         | Exp.                                   | DFT+U | Exp.                                                                                 | DFT+U |  |  |
| CeO <sub>2</sub>        | 0.014                                  | 0.017 | 0.001                                                                                | 0.003 |  |  |
| $Ce_{0.9}Zr_{0.1}O_{2}$ | 0.035                                  | 0.029 | 0.015                                                                                | 0.009 |  |  |
| $Ce_{0.8}Zr_{0.2}O_{2}$ | 0.05                                   | 0.046 | 0.037                                                                                | 0.025 |  |  |

# Fair agreement between experiments and theoretical predictions

Experimental oxygen off-stoichiometric data available: Hao *et al.*, **Chem. Mater. 2014**, 26, 6073

No thermodynamic assessments available for Zr-Ce-O ternary system

# Accomplishments & Progress Ce<sub>0.8</sub>Zr<sub>0.2</sub>O<sub>2</sub>: DFT+U vs. Experiment Reducing Conditions



# Accomplishments & Progress Posterior distributions (Interaction with Project Node Expert)

#### **Collaboration Effectiveness: With Node Expert Bert Debusschere, SNL**

- Fit  $\delta$  as a function of temperature and partial pressure of O<sub>2</sub> for Ceria
- All marginal distributions are unimodal and well defined, indicating the parameters are well-informed by the data (taken from Zinkevich)
- Cross correlations show strong dependencies between some of the parameters



HydroGEN: Advanced Water Splitting Materials

Sigma is the standard deviation of the f10 Gaussian noise model f11 f20 f21 f30 f31 sigma

All the thermodynamics can be derived from this function and known gas phase thermodynamics

### Accomplishments & Progress Relating the chemical potential and operating conditions



effectiveness of heat exchange

HydroGEN: Advanced Water Splitting Materials

16



# **Milestone Status**

| Milestone Schedule |                                                                                                                                                                           |           |                                        |                    |            |                     |                |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|--------------------|------------|---------------------|----------------|--|
|                    | Project Milestones                                                                                                                                                        | Туре      | Task Completion Date (Project Quarter) |                    |            |                     |                |  |
| Milestone #        |                                                                                                                                                                           |           | Original<br>Planned                    | Revised<br>Planned | Actual     | Percent<br>Complete | Progress Notes |  |
| 1.1                | Computational framework adapted<br>for perovskites and fluorites) and<br>reduced model defined.                                                                           | Milestone | 12/31/2017                             |                    | 12/31/2017 | 100%                | Completed      |  |
| 2.1                | Computational accuracy on $(Ce,Zr)O_2$ and $(La,Sr)MnO_3$ validated - at least 10% accuracy achieved and trends with substitution and off-stoichiometry strictly correct. | Milestone | 3/31/2018                              | 5/31/2018          |            | 80%                 | On-going       |  |
| 3.2                | Trends on desirable chemical<br>potential map determined, in other<br>words an inverse design target<br>defined.                                                          | Milestone | 6/30/2018                              | 7/31/2018          |            | 20%                 | On-going.      |  |
| 4.1                | Significant Progress milestone:<br>Stability map on tertiary<br>perovskites produced - at least 2<br>candidate classes and stability<br>limits identified.                | Milestone | 9/30/2018                              |                    |            | 0%                  | Not started.   |  |
| 5.1                | Preliminary results on a chemical potential map completed and results verified.                                                                                           | Milestone | 12/31/2018                             |                    |            | 20%                 | Not started.   |  |
| G/NG               | Go/No-Go: Predictive power<br>demonstrated                                                                                                                                | Go/No-Go  | 3/31/2019                              |                    |            | 20%                 | Not started.   |  |

# **Collaboration: Effectiveness**

It takes a "village"



All the important thermodynamics is encompassed in the oxygen chem. pot. Extensive interactions with the UQ node as reported; initial interactions with the experimental nodes (too early for results) Will incorporate all DFT+U results and fits for  $\delta$  into the data hub Will participate in the DFT+U working group when organized by 2B project

# **Proposed Future Work** Remaining Challenges and Barriers

- Benchmark SrMnO<sub>3</sub>, ternary of relevance in (La,Sr)MnO<sub>3</sub>
  - Generalize and validate the sub-lattice formalism for (La,Sr)MnO<sub>3</sub>
- Identification of right reference states crucial for using the sublattice model
  - General rules, if possible, need to be formulated
- Validate sub-lattice formalism for quaternary (La,Sr)MnO<sub>3</sub>
- After validation, screen for better candidates
  - Estimate capacities using DFT+U calculations + sub-lattice formalism
- Identify key performance limiting factors
- Formulate design rules that would clearly differentiate good candidates and enable swift screening
- Derive screening model relating the thermodynamics (oxygen chemical potential) to efficiency
- Uncertainty Quantification
  - Characterization of model error, explore for best model tradeoff between accuracy and simplicity
  - Propagation of model error into thermodynamic properties
  - Propagation of uncertainties trough cycle efficiency model
  - Determination of measurement / DFT+U accuracy needed to obtain desired confidence in process efficiency

# **Project Summary**

- Construction of chemical potential maps is useful to decouple the energetic contributions of the gas and solid phases in a thermochemical cycle
- Prediction of chemical potentials in solid phases is not trivial
  - Construction of sub-lattice models, with energy values from DFT+U, seems to be a promising way forward
  - Good agreement with experimental data for binary (CeO<sub>2</sub>) and ternary {(Ce,Zr)O<sub>2</sub> and LaMnO<sub>3</sub>} systems
  - Note: Ce-Zr-O ternary and almost any candidate not already explored do not have a full thermodynamic assessments (CALPHAD models) available
- We have developed a way to extract the chemical potential from experimental data numerically, which can be used to validate computation.
- We are developing a methodology for uncertainty quantification to determine how accurate is accurate enough (either experiment or computation) and provide uncertainty bands to differentiate between materials.
- Next: Identify inverse design criteria and candidate materials.





# Thank you for your attention



# **Technical Back-Up Slides**

## **Approach: Innovation** Water splitting energetics

$$\left(\frac{1}{\delta}\right)MO_{x-\delta} + H_2O \rightarrow \left(\frac{1}{\delta}\right)MO_x + H_2$$
 Target T:  $\geq 873$  K, pH<sub>2</sub>O/pH<sub>2</sub> $\geq 9$ 

The reduction reaction is favorable if the Gibbs energy of the reaction is negative

$$\Delta G_{WS} = \left(\frac{1}{\delta}\right) G^{MO_{\chi}} + G^{H_2} - \left(\frac{1}{\delta}\right) G^{MO_{\chi-\delta}} - G^{H_2O} \le 0$$

Rearrangement of terms

 $\left(\frac{1}{\delta}\right)G^{MO_{x}}-\left(\frac{1}{\delta}\right)G^{MO_{x-\delta}}\leq G^{H_{2}O}-G^{H_{2}}$ Chemical potential of oxygen in gas stream Chemical potential of oxygen in solid  $\delta \times \mu_0^{MO_x - MO_{x-\delta}, solid} = G^{MO_x} - G^{MO_{x-\delta}}$  $p_{H_2}$  $\approx \Delta H_f^{MO_x} - \Delta H_f^{MO_{x-\delta}} - T(S^{MO_x} - S^{MO_{x-\delta}})$  $\approx \Delta H_f^{H_2 O} - T(S^{H_2 O} - S^{H_2}) + RT \ln \frac{p_{H_2 O}}{p_{H_2}}$ Main *T* dependence is from *S* terms  $\mu_{O}^{MO_{x}-MO_{x-\delta}, solid} \leq \mu_{O}^{H_{2}O-H_{2}, gas}$ Water splitting is spontaneous, if





### Accomplishments & Progress Benchmarking ternary LaMnO<sub>3</sub>: Exp. vs DFT+U, 298K



### **Accomplishments & Progress** LaMnO<sub>3</sub>: Experiment vs. DFT+U, reducing conditions

