

Benchmarking Advanced Water Splitting Technologies

Dr. Katherine Ayers Proton OnSite June 13, 2018

Project ID # PD170

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Benchmarking Advanced Water Splitting Technologies

PI: Kathy Ayers, Proton OnSite Co-PIs: Ellen B. Stechel, ASU; Olga Marina, PNNL; CX Xiang, Caltech Consultant: Karl Gross

Project Vision

A cohesive R&D community working together; interacting with the EMN to define targets, best practices, gaps, and priorities; aggregating and disseminating knowledge; accelerated innovation and deployment of advanced water splitting technologies.

Project Impact

Development of a community-based living roadmap across technologies to assist in maintaining a balanced DOE portfolio.

Award #	EE0008092
Start/End Date	09/01/2017 - 02/28/2019
Total Project Value Funds Received to Date	\$2.2 M \$0.99 M
Photoelectrock Water Split	hemical
	康

Low- and High-Temperature Advanced Electrolysis Solar Thermochemical Water Splitting

Approach- Summary

Project history

Team of subject matter experts assembled for each sub-area to engage with each sub-community

Consultant from a similar effort in hydrogen storage added to convey lessons learned

Barriers

Lack of consensus regarding testing protocol/standards

Large diversity of information to compile and develop recommendations from

Different TRLs for different technologies

Proposed t	targets
------------	---------

Metric	State of the Art	Proposed
Survey for priorities	N/A	High % response and opportunity for dialogue
Metrics	\$/kW, \$/kg	Component level parameters; system considerations
Node assessment	N/A	Identification of gaps and strengths

Partnerships

LTE (PEM/AEM): Proton OnSite HTE (SOEC): PNNL STCH: ASU PEC: Caltech Consultant: Karl Gross

- Develop a framework of protocols/standards for testing performance of materials, components, devices, and systems
- Facilitate acceptance of community-wide technology
- Establish an annual project meeting to share learnings and develop recommendations within and across technology areas
- Assess capabilities and identify gaps for development of advanced water splitting technologies
- Promote acceptance of protocols and methodologies including cost and performance assessments and database comparisons
- Assemble roadmaps to further development of each technology pathway

Project Tasks

Task	Timing	Goal
1. Framework Set-up	Sep '17 – Aug '18	Develop a searchable library of screening tools, materials, and state of the art technology (with HydroGEN)
2. Capabilities Assessment	Nov '17 – Jul '18	Assess existing capabilities within the EMN across all water splitting pathways
3. Protocol Definition	Jun '18 – Feb '19	Develop bench scale testing protocols for each water splitting pathway as output of Year 1 project meeting
4. Protocol Verification	Nov '18 – Feb '19	Verify procedures and configurations have been sufficiently defined for reproducible results
5. Program Management	Nov '17 – Feb '19	Ensure protocols and Best Practices are developed in accordance with broader EMN guidelines

- Development of standardized test methods and benchmarks
 - Leverage EMN node capabilities
 - Decrease development cycle times through common comparison
 - Support DOE Hydrogen and Fuel Cells Program goals to sustainably produce hydrogen for <\$2/kg
 - Applicable across the broader HydroGEN Consortium
 - Allow for direct comparisons of materials and water splitting technologies
- Supports the HydroGEN Consortium R&D model by bringing together and partnering with National Labs, Academia and Industry to:
 - Develop and implement test methods and evaluation criteria
 - Facilitate R&D and commercializing of water splitting technologies

Accomplishments: Budget Period 1 Milestones

Milestere		Task Com	pletion Dat			
#	Project Milestones	Original Planned	Revised Planned	Actual	Percent Complete	Progress Notes
1.1	Year 1 project meeting to present output of capabilities and gap assessment, and solicited input to define details of bench scale protocol development based on an initial framework.	9/30/2018	10/30/2018		40%	Preliminary meeting plans, presentations at conferences
1.1.1	Important questions and parameters for each technology area and surveys ready for dissemination.	12/31/2017	1/31/2018	3/31/2018	100%	Framework and questionnaire developed for each technology
2.1.1	Capabilities assessment including surveys of each Node with 80% response rate completed and synthesized.	3/31/2018		3/31/2018	100%	Table developed to summarize capabilities and readiness. Feedback received from node owners.
2.2.1	Gap assessment including questionnaires with a goal of 50% response rate completed and synthesized.	6/30/2018			20%	Initial feedback solicited. Sending to broader community
3.1.1	Project meeting results and outcome report compiled and published.	12/31/2018			0%	Not started.

Accomplishments: Test Frameworks & Questionnaire

- A draft framework and questionnaire was developed for each water splitting technology in the HydroGEN consortium and categorized into:
 - Material Level Properties
 - Component Level Properties
 - Device Level Properties
- Feedback was solicited from nodes and the broader water splitting community
- Periodic newsletter established to update HydroGEN consortium on strategy and progress

Accomplishments: Test Frameworks: LTE (Low Temperature Electrolysis)

Catalua

Materials

Catalysis Activ

ECSA

A/mgPGM MH

ACCORDENCE IN CONTRACTOR OF CONT

=3.5PGM

- Intent: Screening of new materials to • determine if in-situ testing is warranted
- Established standards and minimum criteria (where available/applicable)
- Test methods based on published . procedures
- Intent: Test at simulated conditions for short duration in standardized sub-scale cell hardware
- Identified non-proprietary hardware and test methods

LTE: Ex-Situ Material Testing Test Level (1, 2, 3) Test Mathead Link to test procedure Patel et al - 2016 Nature Scientific Report 008 +1.5 upPGM/cm2 v OFRI 1 ATV DOZ Onset potientia vi. IH Sheng - 2013 Energy&Env.Sci Supplement - HER RDE Pro an rate IOER PEM/AEM: 20m in Alkaline Scancer HER AM DOWN Reier - 2012 ACS Catalysis - OER - Acid - Metal Over and in the little of v tation speed (OKA/HOR): 2504 280mV at March 1 10mA/cm berA/cm

ALC: NOT THE OWNER WATER

at Set Potential of LSSV

Current Density

cedure may vary by cataly

OER-PEM 0.30

Vingle at 1.55V (

Johnson Matthe HER- AEM: 0.5-0.6

A/mgPt for Pt/HSC

OER: 29.4m2/g i

opowder, metal

OFF-PEN

HER ADA

24.4

008-525

m2/g

HER:

Iden 2 Fy P

1.20A/mg

Alia - 2016 JES

Sheng - 2010 JES

Rejer - 2012 ACS Cataly

Durit - 2003 JES

Alia - 2006 ECS - For OER Catalysts - He Underpot

eng - 2013 Energy&Env.Sci Supplement - HER RDE

- Intent: Test at realistic operating conditions for extended duration in OFM cell stack hardware
- Established test methods and criteria for evaluation

LTE: In-Situ Testing at Operating Conditions

Component	Metric(s)	Units	Test Method	Notes Standard (for reference calibration)		Minimum criteria	Link to test procedure
			Based on H2 production and energy				Ref. 2017 NREL Presentation
Full Stack	Stack Efficiency	kWh/kg	produced vs. energy inputs	At current density of 1.0 A/cm2	51 kWh/kg	>45 kWh/kg	
							Ref. 2017 NREL Presentation
Full Stack	Durability/Cell Decay	μV/cell-hr	Variable Power Durability Testing	1000 hr durability testing at 1A/cm2	0.1 µV/cell-hr	<5 µV/cell-hr	ElectroHyPEM Report - Section 2.2.2
							ElectroHyPEM Report - Section 2.1.1
Full Stack	Ohmic Resistance	Ω-cm2	Electrochemical Impedance Spectroscopy		0.8Ω-cm2 (3 cell short stack)	<0.4Ω-cm2/cell	Siracusano et al - 2011 IJHE
					13.57V for 8-cell stack (1 bar	<1.9 V/cell at 1	
Full stack	Stack Voltage	v	Polarization Curves	At current density of 1.0 A/cm2	operating pressure at T=86C)	bar and 50C	ElectoHyPEM Report - Section 2.2.1
							ElectroHyPEM Report - Section 2.2.2
					1.4% H2 in O2 (7 bar balanced		
					pressure, 80C, Nafion N117		
Full Stack	Hydrogen Crossover	%H2 in O2	Hydrogen monitors in integrated system		membrane)	<2%H2 in O2	Schalenbach corrigendum

HydroGEN: Advanced Water Splitting Materials

*Tables truncated for clarity

LTE: In-Situ Testing at Simulated Conditions

.

Accomplishments: Test Frameworks: STCH (Solar ThermoChemical H₂)

- Intent: Screening of new materials to determine if further testing is warranted
- Established standards for each materials class
- Establish normalization of formula unit; for example on one metal cation or one oxygen
- Test methods build on literature results and node capabilities
- At least three and perhaps more materials classes, with standards for each class of the fundamental functional material: the redox active metal oxides
- Fluorites ½ AO₂, Perovskites ¼ ABO₃, Spinels, Normal and Inverse ¼ AB₂O₄, and others, e.g. Pyrochlores ¼ (A₂B₂O₇)
- Intent: Take into account actual operating conditions and/or operating cycle for extended duration as feasible
- Established sets of standardized operating conditions

STCH: Ex-Situ Material Testing: Fluorites, e.g. Ce_{1/2}O

-								
Material	Metric(s)	Units	Test Method	Test Level (1,2,3)	Notes	Standard for Reference Calibration	Minimum Criteria	Link to procedure or node
Redox Active			•			•	•	
Fluorite						Ceria (M _{0.5} O)		
	productivity Moles H ₂ per Mole Cation	mol/mol	Stagnation flow reactor or thermal measurements	1	Requires fixing the reduction temperature and oxygen partial pressure (e.g., 1400C, 10 Pa)		0.025	Stagnation Flow Reactor
	enthalpy of reduction	kJ/mol_0	Calphad or equivalent; van Hopf analysis from measurements of equilibrium reduction extent as function of temperature and partial pressure of oxygen	1	Experimental measurements are developed for measuring δ as a function of T and pO2		TBD	high-temperature-x-ray-diffraction-ht- xrd-and-complementary-thermal- analysis
	entropy of reduction	J/mol_O/K	Calphad or equivalent; van Hopf analysis from measurements of equilibrium reduction extent as function of temperature and partial pressure of oxygen	2	Experimental measurements are developed for measuring δ as a function of T and pO2; van Hopf analysis has been applied but as an extrapolation to T $\rightarrow \infty$		TBD	high-temperature-x-ray-diffraction-ht- xrd-and-complementary-thermal- analysis
	phase purity	unitles	X-ray diffraction	1	% of desired phase		95%	

STCH: Ex-Situ Material Testing: Perovskites, e.g. (La,Sr)_{1/3}Mn_{1/3}O

Material	Metric(s)	Units	Test Method	Test Level (1,2,3)	Notes	Standard for Reference Calibration	Minimum Criteria	Link to procedure or node
Redox Active								
Perovskite						(La,Sr) _{1/3} Mn _{1/3} O		
	rate of reduction	µmol/sec/cm ² or mmol/sec/mol_0	Stagnation flow reactor	2	Normalization is an open question		TBD	Stagnation Flow Reactor
	rate of re-oxidation	µmol/sec/cm ² or mmol/sec/mol_0	Stagnation flow reactor	2	Normalization is an open question; also open is how to measure in counterflow		TBD	Stagnation Flow Reactor
	oxygen conductivity	S/m		2	Need to set a standard temperature or minimum temperature		TBD	
	thermal conductivity	W/cm/K		2	Need to set a standard temperature or minimum temperature		TBD	

STCH: In-Situ Testing at Operating Conditions

Material	Metric(s)	Units	Test Method	Test Level (1,2,3)	Notes	Standard for Reference Calibration	Minimum Criteria	Link to procedure or node
Redox Active	efficiency (excluding optical)	unitless	Calculation given thermodynamics and operating cycle	2	Requires fixing the operating cycle (perhaps multiple ones)		25%	sth-efficiency-prediction-platform
Redox Active	cycle time	minute	TBD	3	Requires fixing the operating cycle (perhaps multiple ones)		TBD	Stagnation Flow Reactor
Redox Active	Cyclability	unitless	TBD	2	loss of capacity between cycle 3 and cycle 1000		5%	

HydroGEN: Advanced Water Splitting Materials

Accomplishments: Test Frameworks: HTE (High Temperature Electrolysis)

Test Framework

- Ex-situ Material and Component Characterization: identify standards, reference materials, test techniques, experimental conditions, and comparison criteria
- In-situ Single Cell Test: compare protocols, operating conditions, safety aspects, and lessons learned for effective lab scale testing
- In-situ Stack Testing: protocol search, identify critical parameters, review and employ best practices and appropriate emergency measures. Validate protocols with industry

HTE Questionnaire

- Assemble multiple choice survey questions on standard materials, single cell choice and standard operating conditions for benchmarking HTE materials and devices
- Seek solicited collaborative efforts with lab nodes

HTE: Ex-Situ Materials Characterization

Material	Metric(s)	Units	Test Method	Test Priority Order*	Notes	Standard (for reference calibration)	Minimum criteria	
			ac impedance		Danse sellet with Pt electrodes or dense	>0.12 for YSZ at 1000*C		
	Ionic conductivity	Sicm	four point measurements	1	bar	>0.01 for H [*] conductor at 600 °C	>0.01S/cm at at 600°C in humid gas	Y. Yamazi Conductiv 21 [13] 27
	Ion transference number		Permiation technique Polarized cell technique	1	Electromotive force measuremths vs. oxygen partial pressure	0.994-0.998 for YSZ at 1000 *C	0.99	N.Q. Minh Ensevier,
	Linear thermal expansion coefficient	K1	Diatometry HT-XRD	1	Dense sample	10.8x10 ⁴ for 8 mol% YSZ 10.1x10 ⁴ for 8aZr+Y+O	match to TEC of both electrodes	R. Manne D. Han, N
Electrolyte	Chemical stability	% latice constant change	XRD	1	chemical lattice expansion on reduction			
	Relative density	%	Archimedes method	1	Water immersion at room temperature	Al ₂ O ₅ ; sintered	pinhole free	

HTE: In-Situ Testing Under Simulated Conditions

Component	Metric(s)	Units	Test Method	Notes	Benchmark (for reference calibration)	Minimum criteria	Link t
Button cell	Size	cm ²	Geometric measurements				
Active electrode surface area	Size	cm ³	Geometric measurements				
Seals	Gas tightness	mV	OCV measumements; vary flow rate	Difference between theretical and measured OCV		50 mV	
Heating rate		C º7 s	Temperature profile setting	A large temperature gradient between the gas inlets and the cell/stack should be avoided to reduce the risk of			2018 - Bas Polarizatio
Reactant flow rate		cm ³ /min					-

HTE: In-Situ Stack Testing

Component	Metric(s)	Units	Test Method	Notes	Standard (for reference calibration)	Minimum criteria
			Based on H2 production and energy	At thermoneutral voltage or at current		
Full stack	Stack efficiency	kWh/kg	produced vs. energy inputs	density of 0.5 A/cm2		
	Durability/Degradatio		Monitor voltage at fixed current or voltage at	1000 hr durability testing at		
Full stack	n rate	µV/cell-hr	fixed current	thermoneutral voltage or at 0.5 A/cm2		
	Area specific			At 13 V or at 0 E A/am2		
Full stack	resistance	Ω-cm2	ac electrochemical impedance spectroscopy	At 1.5 V or at 0.5 Aycm2		
Full stack	Stack voltage	v	dc polarization curves			
			Gas concentartion testing; current density measurements			
Full stack	Reactant utilization	%				

Accomplishments: Test Frameworks: PEC (Photo Electrochemical Electrolysis)

PEC questionnaire

- Included three theme questions that help inform new guidelines for benchmarking PEC materials and devices and enable effective comparisons across research community.
- Included open questions that address the pressing needs for PEC water-splitting and solicited collaborative efforts with lab nodes.

PEC Test Framework

- Test framework was categorized into Materials level, Component level and Device level testing and benchmarking.
 - Materials level included photo-absorbers, catalysts, protective layers, electrolytes (liquid or polymer).
 - Component level included photoelectrodes, transport component and auxiliary component.
 - Device level included key performance parameters at various operating conditions.
- Characterization techniques, literature standards and notes/limitations were also included in the test framework.

PEC-materials level

lass of Material	Key Parameters	Standard	Techniques	References	Notes/Limitations
	Bandgap	St. L1eV ⁴	UV-ris	23	-Subjective analysis -Bulk band gap may differ from surface
			PL.		-Shows optimum performance
	Band positions (valence band/conduction band)	n-Se (111) $E_{sbm}^{B} = 0.88 \text{ eV}^{0}$ p-Se (111) $E_{sbm}^{B} = 0.27 \text{ eV}^{0}$	EIS (Flat band potential)		-Surface heterogeneity -Impacted by surface states -No spatial resolution
			XPSUPS	0	-Ex utu
	Minority carrier diffusion length (carrier mobility, carrier life time)	p-Si (B-doped, $n_{\rm B} \simeq 6 \times 10^{13}~{\rm cm}^3$):	Transient absorption spectroscopy	*	-Measures lifetime only
			Time-resolved Photolaminescence		 Cryogenic temperatures Non-radiative sources of decay may contribute
Photo-absorber		n-Si (P-doped, no = 5×10 ¹⁵ cm ²) 166 µm ³	Electron Beam- Induced Current	n	-Typically qualitative -Dumages organic materials -Ex situ
			Chopped photocurrent-time	12	-Low precision
					Amerikan sinches

PEC-component level

omnonent Propertie

Device Propertie

Class of Component	Key parameters	Analysis Techniques	References	Protocol standardization level
	Photo-generated carrier collection efficiency	EQE IQE	232	1
	Open circuit photovoltage	OCP	12	1
	Geometric-area average photocurrent density	i-t	2,9,34	1
Photoelectrode (e.g., electrocatalyst-light absorber assembly or	Spatially resolved photo-current density and local quantum yield	Scanning Photocurrent Microscopy/ SECM/ SECCM	35-34	2-3
electrocatalyst-protective coating-light absorber	Spatially resolved local pHs at photoelectrodes	SICM/SECM	35,40	3
assembly)	Spatially resolved energetics landscape at semiconductor/catalyst and semiconductor/electrolyte interfaces	Scanning Conductance Microscopy/ Scanning Photocurrent Microscopy/ STM/AFM	35 41	2

PEC-device level

Key Parameters	Analysis techniques	References	Protocol standardization level			
Standardized testing device area for		33	1			
Standardized testing device area for						
sub-scale			2			
\$/kg H ₂	Techno-economic analysis	48	1-2			
Energy return on energy invested (ERoEI)	Techno-economic analysis of production costs, STH, and stability	48,49	1-2			
Solar-to-hydrogen (STH) conversion efficiency at 1 sun illumination (at room temperature and 1atm H ₂	$ \begin{array}{l} Un-biased \ photocurrent \ measurements \\ in \ situ \ H_2/O_2 \ concentration \ detection \ in \ electrolyte \\ H_2/O_2 \ collection \ in \ a \ burette \end{array} $	2,34	1			

Accomplishments: Questionnaires

- A questionnaire was developed for each water splitting technology
- Specific choices were provided for standards:
 - Materials
 - Test hardware
- Feedback will be reviewed to reach a common set of standards

Excerpt from Questionnaire

What standard conditions should we use to benchmark devices for <u>LTE/HTE/STCH/PEC water splitting?</u>

Background and motivation: We aim to develop standards for benchmarking performance, so comparisons between devices from different research groups can be made in future. In addition to device-specific optimal operating conditions, a community-accepted benchmarking tests developed through this exercise are strongly encouraged to include in publications.

- 1) Do you think reporting the performance of devices at standard conditions, in addition to "favored" testing conditions, would be useful?
- 2) Would a standardized cell hardware design be useful?

What standard materials would be the most useful?

What sort of standard cell hardware would be the most useful?

Open questions:

- 1) What are the most pressing needs/challenges for LTE/HTE/STHC/PEC water splitting?
- 2) What are the critical parameters to calculate and characterize for LTE/HTE/STHC/PEC? List parameters that should be measured during ex-situ and/or in-situ testing.
- 3) How can we accelerate testing of device/component stability?
- 4) What techniques/instruments would be the most useful for US National Labs to develop as nodes?

- All HydroGEN Node capabilities were assessed for applicability and readiness level for each AWS technology
- Coordination with node leads to clarify and re-assess readiness as needed
- Reviewed with HydroGEN Steering Committee to ensure H2AWSM website updates are implemented
- A consolidated table was created to serve as a resource for the broad water splitting community to identify capabilities

		Node Readiness						
Capability	Lab	LTE	STCH	HTC	HTE	PEC	Link	
Ab Initio Modeling of Electrochemical Interfaces	LLNL	2	N/A	N/A	N/A	1	Link	
Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis	INL	N/A	N/A	N/A	2	N/A	<u>Link</u>	
Advanced Electron Microscopy	SNL	2	1	1	1	1	<u>Link</u>	
Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis	SRNL	3	2	1	1	3	<u>Link</u>	
Albany: Open-Source Multiphysics Research Platform	SNL	3	3	N/A	3	2	<u>Link</u>	
serve *Truncated list								
	Capability Ab Initio Modeling of Electrochemical Interfaces Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis Advanced Electron Microscopy Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis Albany: Open-Source Multiphysics Research Platform C	Capability Lab Ab Initio Modeling of Electrochemical Interfaces LLNL Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis INL Advanced Electron Microscopy SNL Advanced Electron Microscopy SNL Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis SRNL Albany: Open-Source Multiphysics Research Platform SNL	Capability Lab LTE Ab Initio Modeling of Electrochemical Interfaces LLNL 2 Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis INL N/A Advanced Electron Microscopy SNL 2 Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis SRNL 3 Albany: Open-Source Multiphysics Research Platform SNL 3	Capability Lab LTE STCH Ab Initio Modeling of Electrochemical Interfaces LLNL 2 N/A Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis INL N/A N/A Advanced Electron Microscopy SNL 2 1 Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis SRNL 3 2 Albany: Open-Source Multiphysics Research Platform SNL 3 3	Note Reading Note Reading Ab Initio Modeling of Electrochemical Interfaces LTE STCH HTC Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis INL N/A N/A N/A Advanced Electron Microscopy SNL 2 1 1 Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis SRNL 3 2 1 Albany: Open-Source Multiphysics Research Platform SNL 3 3 N/A	Node Reductives Capability Lab LTE STCH HTC HTE Ab Initio Modeling of Electrochemical Interfaces LLNL 2 N/A N/A N/A Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis INL N/A N/A N/A 2 Advanced Electron Microscopy SNL 2 1 1 1 Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis SRNL 3 2 1 1 Albany: Open-Source Multiphysics Research Platform SNL 3 3 N/A 3	Capability Lab LTE STCH HTC HTE PEC Ab Initio Modeling of Electrochemical Interfaces LLNL 2 N/A N/A N/A 1 Advanced Electrode and Solid Electrolyte Materials for Elevated Temperature Water Electrolysis INL N/A N/A N/A 2 N/A Advanced Electron Microscopy SNL 2 1 1 1 1 Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis SRNL 3 2 1 1 3 Albany: Open-Source Multiphysics Research Platform SNL 3 3 N/A 3 2	

ID #	Capability	Primary Class	Labeled Class	Lab	LTE	sтсн	нтс	HTE	PEC	Node Utilization	# Projects	
4	Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis	Analysis	Analysis	SRNL	3	2	1	1	3	GW #3 HTC	1	

- Project is on track to meet BP 1 milestones
- Remaining tasks
 - Task 1: Incorporate feedback from broad water splitting research community, finalize test frameworks
 - Task 2: Finalize assessment of EMN Node capabilities, update H2AWS website
 - Task 3: Using input from Task 1, begin development of test protocols.
 Hold project meeting to report results, solicit additional inputs
- Impact on water splitting research community
 - Identification of capabilities within nodes
 - Provide outline of test methods and criteria for characterizing and benchmarking new materials

Collaboration: Effectiveness

- Wide-ranging and collaborative effort within and beyond the HydroGEN consortium
 - LTE, HTE, STCH, and PEC technologies
- Goal: develop a roadmap across technologies to assist in maintaining balanced DOE portfolio
 - Protocol and benchmarking development
 - Specific needs for each technology
 - Cooperative coordination effort across technologies
- Approach: Engage subject matter experts, Steering Committee, FCTO staff, and community in dialogue for each pathway
 - Gather input through surveys and questionnaires
 - Assess capabilities and gaps, including EMN Lab nodes
 - Recommend standards, protocols, and priorities
 - Assemble themes into cohesive strategy
 - Encourage collaborative best practices development efforts

- Budget period 2 will focus on Bench Scale Protocol Validation & Sub-Scale Development
- Total Budget: \$2.2 million (over 3 years, including Lab funding)

Milestone #	Project Milestones	Completion Date
3.1	Assessment of relevant operational conditions for field use completed.	6/30/2019
3.2	Recommended accelerated testing protocol including defining how the protocols address known degradation mechanisms.	3/31/2020
3.3.1	Gap assessment on capabilities within EMN / R&D community for field simulations and long term reliability testing completed.	12/31/2019
3.3.2	Field test sites and requirements for subscale testing within EMN and expert sites established/recommended.	6/30/2020

- Objectives:
 - Define targets, testing protocols, validation standards, best practices, gaps, and priorities
 - Aggregate and disseminate knowledge
 - Accelerate innovation and deployment of advanced water splitting technologies
- Relevance & Impact:
 - Development of a community-based living roadmap across technologies to assist in maintaining a balanced DOE portfolio
- Collaboration Effectiveness:
 - Engagement of node subject matter experts, HydroGEN Steering Committee and broad water splitting community
- Accomplishments:
 - Draft framework and questionnaire was developed in collaboration with lab node experts and experts for each water splitting technology in the HydroGEN consortium
 - All HydroGEN capabilities were assessed for applicability and readiness level
- Future work:
 - Protocol validation, accelerated test development, and capabilities gap assessment