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Overview
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Timeline Barriers to Address
• Start: October 2017
• End: Determined by DOE
• % complete (FY18): 70% 

• Inconsistent data, assumptions and 
guidelines

• Insufficient suite of models and tools
• Stove-piped/Siloed analytical 

capability for evaluating sustainability

Budget Partners/Collaborators
• Funding for FY18: $260K • U.S.DRIVE: Hydrogen Interface 

Taskforce (H2IT)
• Lawrence Livermore National 

Laboratory (LLNL)
• Energy Technology Analysis (ETA)



Relevance/Impact
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Objective: Evaluate impacts of on-board hydrogen storage systems 
on delivery and refueling cost

$6-8/kg
$4-6/kg

~$2/kg

~$3-4/kgBulk of H2 cost is in 
delivery and refueling

Today, hydrogen cost at the 
dispenser in CA is $13-$16/kg



Pathways for consideration – Relevance
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700 bar storage/refueling (baseline)
Metal Hydride (MH) storage/refueling
Metal Organic Framework (MOF-5) storage/refueling
Cold Gas storage/refueling
 Cryo-compressed hydrogen (CcH2) storage/refueling

Storage System System Model 
Source Configuration Operating 

Temperature
Operating 
Pressure

700 bar Compressed H2 Baseline Single Tank CF Overwrap Ambient (-40 to 85°C) 5 bar to 875 bar

350 bar Cryo-compressed ANL Type 3 Tank with MLVI 35 to 93 K 5 to 350 bar
700 bar Cryo-compressed ANL Type 3 Tank with MLVI 35 to 123 K 5 to 700 bar

400 bar Cold gas ANL Type 4/CF/MLVI 180 to 195 K 5 to 400 bar
100 bar Cryo-Adsorbent

cryo-cooled ANL MOF-5 within Type 3 Tank 
with MLVI 145 to 215 K 5 to 100 bar

Metal hydrides ANL Reverse engineering 
material within Type 3 Tank

Ambient (-40 to 
120oC) 5 to 100 bar



Impact of onboard storage system on delivery and 
refueling cost – Relevance/Approach
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Analysis 
Framework

Models & 
Tools

Studies & Analysis Outputs & 
Deliverables

GREET, H2A 
models, MSM

DOE’s Fuel Cell 
Technologies Office 

(FCTO),
Program Plan and Multi-

Year RD&D Plan

Techno-
economics

HDSAM

Develop size and cost of 
compressors and 

cooling/heat exchanger 
equipment for various 

onboard storage systems  

Compare impact of 
onboard storage 

systems on delivery and 
refueling cost

Data

Performance and 
cost data



Outcome of Analysis – Approach
 Compare impact of P-T tradeoffs on hydrogen delivery 

and refueling cost [$/kg]
$/kg

Tstorage [K]20K
LH2

80K
LN2
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(-40oC)
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Baseline 700 bar 

P & T are key for refueling cost

Required temperature/pressure for various onboard storage systems
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Develop new delivery and refueling pathways in 
HDSAM for onboard systems – Approach 
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HDSAM = Hydrogen Delivery Scenario Analysis Model

https://hdsam.es.anl.gov/index.php?content=hdsam

https://hdsam.es.anl.gov/index.php?content=hdsam


8
8

Metal Hydride Pathway – Approach

 Thermolytic, reversible metal hydride

M + x/2 H2 ⇄ MHx + Heat

 Exothermic charging, so refueling equipment must deliver 
hydrogen (100 bar, 300K) and remove heat of adsorption and 
compression

 Heat of compression is additional 0.1 MW

 Hydriding enthalpy is constrained to 27−41 kJ/mol-H2

-Average Cooling duty 0.4−0.6 MW 
for refueling 5 kg H2 in 3 minutes 
-Peak cooling can be 1 MW
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Metal Hydride Pathway: Kinetics – Accomplishment

 Charging rate is affected if MH is either too cold or too hot
 Must constrain ΔT  30−40K
 1 MW cooling via dm/dt and Cp rather than by ΔT

H2
coolant

ΔT

 Coolant supply and return lines >1” ID

 Otherwise, large pressure drop
 Bulky interconnect seems unavoidable
 Hot fluid with enough pressure to spray

Station attendant may be required  

MH
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Developed HX Design for Two Metal Hydride – Accomplishment

Scenario Heat 
Duty

Coolant 
Tinlet

Coolant 
Toutlet

Coolant 
mo

HX 
LxW

HX 
Weight

Fan 
Power

Pump 
Power

HX 
Cost

MW oC oC Kg/s ft lb HP HP $
Low-T, 
Low-H 0.6 100 61 3.6 14x13 12,000 8 2 52,000

High-T, 
High-H 1.1 168 129 10.3 14x5 2,700 3 9 16,000

- HX design using Aspen
- Ambient Temperature 38oC
- Tube-fin HX, tube diameter = 0.75”
- Steel tubes/Aluminum fins, G-fins, 14 FPI
- Low-T: 50/50 (wt%) propylene glycol/water coolant; 6 tube rows, 6 passes
- High-T: 92/8 (wt%) ethylene glycol/water coolant; 4 tube rows, 4 passes
- Low-T: HX area 19,000 ft2, air face velocity = 6 ft/s
- High-T: HX area 3,200 ft2, air face velocity = 12 ft/s
- HX cost is uninstalled, installation factor = 2

(1) Low-temperature, low-enthalpy 
(2) High-temperature, high-enthalpy 
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Metal Hydride Pathway: Refueling Cost – Accomplishment

$1.6M

$2.3M (equipment)

1000 kg/day station Capacity, 0.8 Capacity factor, 20bar H2 supply,
4 dispensers

Assuming future MH that 
meets H2 storage DOE 

targets
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Designed H2 Cooling System for MOF Refueling 
– Accomplishment

 

    

 

 

 

 

LN2 
Tank 

LN2 
Pump 

H2 300K 

H2 145K 

GN2 270K 

GN2 77K 

 

LN2 77K 

 

Vehicle H2 Storage 155K 

LN2 77K 

GN2 77K 

 

 H2 Cooler 1 

H2 Cooler 2 

100 kW

90 kW

 5 kg fill in 3 minutes 
 Peak flow: 2.6 kg/min
 Bed pressure 5 bar  100 bar
 MOF bed temp. 300K  155K
 GH2 cooled to 145K 
 ∆hads= 7 kJ-mol-H2

 Peak cooling loads:
– Bed: 90 kW
– H2: 100 kW

 Cooling with LN2
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Estimated HX Cost for MOF Refueling – Accomplishment

Scenario Heat Duty H2
Tinlet

H2
Toutlet

HX 
UA

HX Cost
(per 

dispenser)
kW K K W/K $

Cooler 1 94 300 151 1900 170,000

Cooler 2 4 151 145 45 7,000

- LN2 delivered to station in volume (~5000 gallons) at $0.3/gallon ($0.1/kgLN2)
- 11 kg (3.6 gallon) of LN2 per kg of H2 dispensed  55 kg (18 gallon) LN2 per vehicle
- Daily LN2 use = 8,800 kg (2900 gallons) of LN2 for 800 kgH2 dispensed per day 
- Preliminary LN2 storage cost based on LH2 storage cost
- LN2 tank (6000 gallons) cost (uninstalled) = $185,000 ($140,000 future high volume)
- LN2 pump capacity = 30 kg/min
- Pump cost (uninstalled) = $70,000 (per dispenser, high volume)
- HX cost is today low volume (uninstalled), high volume @55%, installation factor = 2

Based on assumptions of future MOF system that meets DOE H2 storage targets 13
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Evaluated Refueling Cost of Metal Hydride and MOF vs. 700 
bar onboard Storage – Accomplishment

$1.6M

$2.3M $2.25M

1000 kg/day station Capacity, 0.8 Capacity factor, 20bar H2 supply,
4 dispensers

Delivering LN2 for 
onsite cooling is costly
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Evaluated Cost of Tube-Trailer Terminal for Cold gas 
Pathway – Accomplishment
 8 kgLN2 is required to cool 1 kgH2 gas from 300K to 80K

 For $0.07 cost of 1 kgLN2 (range $0.07-$0.16/ kgLN2)
 +$0.55 to cool 1 kgH2 gas from 300K to 80K

 $10M capital for 2M gallons LN2 dewar (5-day supply)
 +$0.15 per kgH2

 $20M capital for LN2  H2 heat exchanger/circulating pump
 +$0.3 per kgH2

Loading Terminal

LN2 HX

CompressionStorage

Comp.

Loading Bays

+$1/kgH2

∆Terminal Cost
= +$1/kgH2
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http://rds.yahoo.com/_ylt=A0WTefRrJ3xIBV0A60.JzbkF;_ylu=X3oDMTBycDZ0MDByBHBvcwM2MARzZWMDc3IEdnRpZANJMDgyXzEwNA--/SIG=1j7n17t5r/EXP=1216182507/**http:/images.search.yahoo.com/images/view?back=http://images.search.yahoo.com/search/images?p=heat+exchanger&ni=21&ei=UTF-8&fr=yfp-t-501&xargs=0&pstart=1&b=43&w=350&h=445&imgurl=www.ritai-fermenter.com/products/products-heat-exchanger-rth-b.jpg&rurl=http://www.ritai-fermenter.com/double-pipe-heat-exchanger.htm&size=83.3kB&name=products-heat-exchanger-rth-b.jpg&p=heat+exchanger&type=JPG&oid=199036d2e2dac328&no=60&sigr=11t7t9age&sigi=122l56bv2&sigb=13f9ejs5p&tt=54371


Estimated Cost Of Cold H2 Gas Pathway Relative to 700 bar 
Refueling with Tube-Trailer Supply – Accomplishment

Loading Terminal

H2 
Production

CompressionBuffer Storage

Refrigeration
 

LN2 HX

CompressionStorage

Comp.

Loading Bays

Refueling 
Station

Vehicle
400 bar
@195K

+$1
$ $
≈

Capital
(insulation)

High Payload

+$0.7 (cryo-compressor)
Onboard 
Storage

T&D

X

X

−$0.35/kg_H2

−$0.4/kg_H2

 1000 kg/day station
 0.8 Capacity factor
 Tube-trailer supply
 4 dispensers

−$0.95/kg_H2

80K

Delivery + Refueling 

Breakeven cost with 
700 bar refueling
115K ∆T allowed
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Evaluated Impact of Cold H2 Gas Loading and 
Unloading on H2 Temperature – Accomplishment

Unloading Tube Trailer Loading Tube Trailer

Simulations show +13oC with each unloading/loading cycle
 Assuming no external heat gain

 Non-ideal expansion and compression (entropy generation)
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Cold H2 Gas Pathway – Accomplishment

 ∆T=+80oC drawing from an empty tube trailer (50 bar, 45K  500 bar)
125 K discharge temperature (assuming cold compressor)

 Impact of heat of compression on temperature rise is significant

s (entropy)

T 

P1 = 50 bar

P2 = 500 bar
125K

45K

Assuming 60% 
isentropic efficiency, 
one stage compression

85K

Other considerations:

 Impact of warm compressor and lines (thermal mass)
 e.g., warm equipment after long idle time

 Impact of warm vehicle tank (>45K at start of refueling)
18



Summary – Accomplishment
 Evaluated impact of onboard hydrogen storage options on refueling cost 

– Metal Hydride (MH)  100 bar, near ambient temperature
– Metal Organic Framework (MOF)  100 bar, 145K
– Cold Hydrogen Gas  400 bar, 195K
Compare to 700 bar refueling

MH provides the largest potential for refueling cost reduction
– Cost reduction ~ $1/kgH2
– Most of the cost reduction is attributed to low refueling pressure
– Hose size is a concern station attendant may be needed

MOF shows increase in cost of refueling despite low refueling pressure
– Most of the cost increase is attributed to LN2 onsite cooling
– Cost of delivered LN2 adds $1/kgH2

 Cold gas provides limited refueling cost reduction potential
– Breakeven with 700 bar refueling cost
– Impact of entropy increase due to isenthalpic expansion, compression 

and components’ thermal mass must be carefully considered
MH, MOF and cold gas onboard storage systems require varied refueling 

pressure and temperature, thus impacting refueling cost differently 
19
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Future Work
 Confirm design, performance and cost of refueling equipment via vendor 

quotes
– Heat exchangers
– LN2 storage and pump
– Low-pressure compressor
– Terminal cost and cryo-compressor for cold H2 gas pathway

 Verify impact of on temperature increase for cold H2 gas pathway
 Expand system boundary to include delivery + refueling cost for consistent 

comparison
 Consider LH2 for 77K MOF refueling
 Consider ambient temperature MOF refuleing
 Include cryo-compressed H2 pathway in the comparative analysis
 Implement new pathways in HDSAM

– Conduct independent model review by experts
– Release updated HDSAM

 Conduct sensitivity analysis on the key cost parameters
 Document data and analysis in peer-reviewed publication

21

Any proposed future work 
is subject to change based 

on funding levels



Project Summary
 Relevance: On-board hydrogen storage systems can have large impact on delivery 

and refueling cost
 Approach: Develop new delivery and refueling pathways in HDSAM for onboard 

systems 
 Collaborations: Collaborated with consultants and experts from other national labs 

(ETA, LLNL) and sought data and guidance from experts (industries and across US 
DRIVE technical teams)
 Technical accomplishments and progress:

– Evaluated impact of MH, MOF and cold H2 gas on refueling cost 
– MH provides the largest potential for refueling cost reduction compared to 700 bar 

refueling (~$1/kgH2)
– MOF shows increase in cost of refueling mainly due to LN2 onsite cooling
– Cold gas refueling cost breakeven with 700 bar refueling 
 Impact of entropy increase due to isenthalpic expansion, heat of compression, and 

components’ thermal mass must be carefully considered
 Future Research:

– Confirm design, performance and cost of refueling equipment via vendor quotes
– Expand system boundary to include delivery + refueling cost for consistent 

comparison
– Implement new pathways in HDSAM
– Conduct sensitivity analysis on the key cost parameters

22
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Acronyms
 AMR: Annual Merit Review
 ANL: Argonne National Laboratory
 CA: California
 CcH2: Cryo-compressed
 CF: Carbon Fiber
 Cp: Specific heat at constant pressure
 DOE: Department of Energy
 ETA: Energy Technology Analysis
 FCEV: Fuel Cell Electric Vehicle
 FCTO: Fuel Cell Technologies Office
 FY: Fiscal Year
 GH2: Gaseous Hydrogen
 GN2: Gaseous Nitrogen
 GREET: Greenhouse gases, Regulated 

Emissions, and Energy use in Transportation
 H: Enthalpy
 ∆hads: Enthalpy of Adsorption
 H2: Hydrogen
 H2A: Hydrogen Analysis
 HDSAM: Hydrogen Delivery Scenario 

Analysis Model
 HP: Horse Power
 HRS: Hydrogen Refueling Station
 HX: Heat Exchanger
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 ID: Inner Diameter
 LxW: Length x Width
 LH2: Liquid Hydrogen
 LLNL: Lawrence Livermore National 

Laboratory
 LN2: Liquid Nitrogen
 mo: Mass Flow Rate
 MH: Metal Hydride
 MLVI: Multi-Layer Vacuum Insulation
 MOF: Metal Organic Framework
 MSM: Macro-System Model
 P: Pressure
 RD&D: Research, Development, and 

Demonstration
 S: Entropy
 T: Temperature
 ΔT: temperature difference
 US: United States
 US eq. gal: U.S. equivalent gallon
 US DRIVE: U.S. Driving Research and 

Innovation for Vehicle efficiency and Energy 
sustainability
 VACD: Variable Area Control Device
 WTW: Well-to-Wheels
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