

Proudly Operated by Battelle Since 1965

Compatibility of Polymeric Materials Used in the Hydrogen Infrastructure

Kevin Simmons, PNNL (PM, Presenter) Keshava Bhamidipaty, PNNL Nalini Menon, SNL Dr. Barton Smith, ORNL Dr. Amit Naskar ORNL Mike Veenstra, Ford

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: October 2015
- Project End Date: September 2018
- % Completed: 75%

Budget

- Total Project Budget: \$1800K
 - Total Federal Share: 100%
 - Total DOE Funds Spent**:

\$196K (PNNL) – includes Ford subcontract

\$75K(SNL)

\$27.4K (ORNL)

* *As of 3/24/17

Barriers

- A. Safety Data and Information: Limited Access and Availability
- G. Insufficient Technical Data to Revise Standards
- J. Limited Participation of Business in the Code Development Process
- K. No consistent codification plan and process for synchronization of R&D and Code Development

Partners

- PNNL (Project Lead)
- SNL
- ORNL
- Ford Motor Company

Relevance

Objectives: To develop a knowledge base of polymer and elastomer materials hydrogen compatibility through development of test methodologies that will enable a better understanding of material interaction in infrastructure that will guide future research and development activities

- Provide scientific and technical basis to enable full deployment of H2 and fuel cell technologies by filling the critical knowledge gap for polymer performance in H2 environments
- Develop standard test protocols for polymeric materials to evaluate their H2 compatibility for conditions, applications, and polymers of need by the hydrogen community
- Disseminate test protocols and compatibility information and support the deployment of H2 infrastructure

Barriers	Project Impact
A. Safety Data and Information: Limited Access and Availability	Develop H2 Tools webpage for data dissemination and hydrogen compatibility guidance
G. Insufficient Technical Data to Revise Standards	Develop test methodologies for evaluating polymer compatibility with high pressure H_2 : (1) in situ tribology, (2) pressure cycle aging. Understand fundamental aspects of hydrogen damage in polymers through techniques like neutron scattering.
J. Limited Participation of Business in the Code Development Process	Performed FMEA analysis from technical experts and stakeholder input to prioritize required material attributes for test methods to evaluate conditions of interest for H2 compatibility. Disseminate project findings through conferences, publications, and website
K. No consistent codification plan and process for synchronization of R&D and Code Development	Engaging codes and standards community (CSA and others) early on and having discussions to synchronize our data collection and test method development with new codes and standards development like CHMC 2

Approach

Identify the issues: Stakeholder Engagement (1st round complete)

FMEA Prioritization of Critical Attributes

Disseminate: Standards, Test Methods, Publications

Proudly Operated by Battelle Since 1965

Test Method Development

Proudly Operated by **Battelle** Since 1965

Project Tasks

<u>Task 1:</u>

Stakeholder Engagement

- Materials of Interest
- Operating Conditions of Interest
- Challenges faced
- Test methods currently employed by them

Approach Work Flow

Proudly Operated by Battelle Since 1965

Approach Industry Stakeholders and FMEA Influenced F Test Methodology Development

Proudly Operated by **Battelle** Since 1965

Project task

- Industry survey confirmed knowledge on hydrogen compatibility of polymers is lacking and provided input regarding pressure and temperature priorities.
- The team completed a Failure Mode and Effects Analysis (FMEA) and identified the top failure causes:
 - Polymer seal (dynamic) material experiences a change in properties (strength, modulus, shear, hardness, etc.) due to hydrogen exposure
 - Polymer barrier material degrades from rapid high pressure differentials (explosive decompression) due to hydrogen exposure
 - Polymer seal (static & dynamic) material selected exceeds hydrogen permeation rate
 - Polymer seal (static & dynamic) material geometry changes and volume swells or reduction due to hydrogen exposure

Project test methodology development directly aligns with industry stakeholder and FMEA input.

approach: Tribology **Pressure cycle** aging Fundamental material changes

- Transitioned from purchased commercial materials to controlled material compounds for research
- Developed model EPDM and NBR compounds with Kyushu University and Takaishi Industries
- Controlled compound additives in six different formulations for each material
 - No filler, crosslinked elastomer
 - Crosslinked elastomer with plasticizer only
 - Crosslinked elastomer with carbon black only
 - Crosslinked elastomer with silica filler only
 - Crosslinked elastomer with plasticizer, carbon black, and silica filler
 - Crosslinked elastomer with carbon black and silica filler

Used to evaluate the effects of hydrogen on polymers and known additives

Accomplishments and Progress Model Elastomer Compounds Hydrogen Content

Proudly Operated by Baffelle Since 1965

9

Accomplishments and Progress Model Elastomer Compounds Hydrogen Content

Proudly Operated by Battelle Since 1965

10

Accomplishments and Progress Hydrogen Content and Volume Change Related to Pressure

Proudly Operated by Battelle Since 1965

The filler material used in these model material compounds show a decrease in volume change for NBR by 10% and 30% in EPDM from unfilled baseline compound

Approach **PNNL Unique In situ Tribometer**

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by **Battelle** Since 1965

Overview of Tribometer

- Linear reciprocating adapted from ASTM G133
- Normal load (using weights) presses steel ball into moving sample
- Frictional force and vertical wear depth profiles measured in situ
- Pressures up to 5,000 psi hydrogen
- Ambient air and high pressure argon tests run for comparison

Accomplishments and Progress EPDM and NBR Model Compound Series

Proudly Operated by Battelle Since 1965

EPDM		PNNL ref.#											
ITEMS	PNN	IL#E1	PN	NL#E2	PNN	IL#E3	PNN	L#E4	PNN	L#E5	PNNL#E6		
Features	No Fill No Pla	er sticizer	No Fil Plasti	ler cizer	Carbo No Pla	n black asticizer	Inorga No Pla	nic sticizer	Carbon Inorgai Plastici	black nic zer	Carbon black Inorganic No Plasticizer		
	TI (IRHD)	PNNI	TI (IRHD) PNNL	TI (IRHD)	PNNL	TI (IRHD)	PNNL	TI (IRHD)	PNNL	TI (IRHD)	PNNL	
Density	0.921	0.93	.919	0.886	1.013	1.010	1.039	1.035	1.073	1.065	1.053	1.05	
Hardness (Duro)	55.3	A52	48.3	A49	67.2	A65	76.3	A71	72	A69	71.9	A69	
CSM Tribo (COF)	1	33		997	1	29	1	.89	1.	31	1.6		
NBR						PNNL	. ref.#						
ITEMS	PNNL	#N1	PNNL	.#N2	PNNL	PNNL#N3 PNNL		#N4	PNNL	#N5	PNNL#N6		
Features	No Filler No Plast	icizer	No Filler Plasticiz	er	Carbon black No Plasticizer		Inorgani No Plasti	Inorganic No Plasticizer		olack c er	Carbon black Inorganic No Plasticizer		
	TI (IRHD)	PNNL	TI (IRHD)	PNNL	TI (IRHD)	PNNL	TI (IRHD)	PNNL	TI (IRHD)	PNNL	TI (IRHD)	PNNL	
Density	1.032	1.018	1.015	1.013	1.118	1.1	1.152	1.137	1.182	1.180	1.175	1.167	
Hardness (Duro)	51	A53	43.4	A47	66	A65	66.1	A65	65.8	A68	68.7	A72	
CSM Tribo (COF)	OF) 1.95		1.3	33	1.5	55	1.7	6	.6	0	1.3	35	

Plasticizer and Filler has significant influence on hardness and CoF

May 8, 2018 **13**

Accomplishments and Progress Optical Evaluations of EPDM Tribology Wear

Proudly Operated by Battelle Since 1965

June 21, 2018 14

Filler has significant influence on wear and elastomer durability

Accomplishments and Progress Optical Evaluations of NBR Tribology Wear

Proudly Operated by Battelle Since 1965

7.5N Load 60 minutes 3.36 meters Ambient air CSM

In situ

Varied Load 60 minutes 3.36 meters Ambient air

CSM 5N Load 60 minutes 3.36 meters Ambient air

Accomplishments and Progress Tribometer Upgrade for In Situ Heating & Cooling

Proudly Operated by Battelle Since 1965

- Target temperatures above or below ambient (-40 to +85°C) for infrastructure applications
- Previous design was to use thermoelectric heater/cooler stage for the system
 - Testing of heaters, Peltier's, thermocouples, etc. complete
 - Peltier were compatible with H2 but were unable to reach target temperatures
 - Redesign underway that integrates new autoclave for lower temperature capability (-50 to +200°C)
 - New design expected to be completed in two months
 - Module will be tested after ambient tests are complete to ensure identical testing conditions

Accomplishments and Progress Compression Set changes for EPDM and NBR with H2 Exposure

Proudly Operated by Battelle Since 1965

PNNL EPDM formulations, effect of H2 exposure on compression set, Compressed to 75% for 22 hours at 110°C, recovered 30 minutes

Compression set change due to H2 exposure for a filled, plasticized EPDM system is insignificant

PNNL NBR formulations, effect of H2 exposure on compression set, Compressed to 75% for 22 hours at 110°C, recovered 30 minutes

Compression set <u>increase</u> by ~37% due to H2 exposure for a filled plasticized NBR system

Accomplishments and Progress Storage Modulus changes for EPDM with H2 Exposure

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

A 20% decrease in modulus is seen in filled plasticized EPDM after H2 exposure

Modulus decrease due to H2 exposure for filled plasticized NBR is insignificant

Accomplishments and Progress Glass transition temperature changes after H2 exposure

Proudly Operated by Battelle Since 1965

- For filled, plasticized EPDM and NBR systems, there is no significant change in T_g due to H2 exposure
- The addition of plasticizer decreases the Tg of EPDM and NBR significantly

May 8, 2018

Accomplishments and Progress Density changes for NBR and EPDM with H2 exposure

Pacific Northwest

PNNL EPDM formulations, change in density after H2 exposure, Round 5

EPDM swells much less upon H2 exposure compared to NBR, which matches previous work on off-the-shelf materials

Accomplishments and Progress Micro-CT images for EPDM after H2 exposure

Proudly Operated by Battelle Since 1965

H2 exposure of EPDM E1 shows numerous slit-shaped voids.

- Formulation EPDM E1 has no filler or plasticizer
- Both formulations contain high Z particles (5% by wt. ZnO)

Microcracks in picture are not aligned in any particular direction and seem more or less distributed all over

There is no preferred orientation.

Comparison of EPOM and KBR before and after hydrogen exposure BEMills 20180320

Unfilled EPDM after H2 exposure has significant microcrack damage

Accomplishments and Progress Micro-CT images for EPDM after H2 exposure

Formulation EPDM E6

Fillers in EPDM E6 are: carbon black (300 nm)

contain high Z particles

has filler but no plasticizer

Both formulations

(5% by wt. ZnO)

and Silica

Proudly Operated by Battelle Since 1965

H2 exposure of EPDM E6 generates fewer but larger voids.

There is no preferred position within the sample.

Fillers appear to help with crack mitigation in EPDM after H2 exposure

4ills 20180320

Accomplishments and Progress Construction of a one-of-a-kind High Pressure Cycling Manifold at Sandia

Proudly Operated by **Battelle** Since 1965

Pressure cycling manifold installed and undergoing safety tests for controlled decompression rates at controlled temperatures

Approach and Progress In situ Dynamic Mechanical Analysis

Hydrogen Autoclave -50 to 200°C @ 5,000 psi

DMA drive

system

- Pressure range atmospheric to 30 MPa
- Frequency sweeps
- Creep and recovery
- Temperature range -50°C to 125°C
- Isothermal runs with pressure sweeps to investigate pressure effects on material with gas variable

evaluating hydrogen pressure effects in materials

Accomplishments and Progress CHMC 2 – High Priority Tests

Scope: This standard provides <u>uniform test methods</u> for evaluating material compatibility with compressed hydrogen applications. The results of these tests are intended to provide a basic <u>comparison of materials performance</u> in applications utilizing compressed hydrogen.

Complimentary to U.S. Department of Energy National Laboratories. Distribution Prohibited

ANSI/CSA CHMC 2-20XX

Test methods for evaluating material compatibility in compressed hydrogen applications - Metals Non Metals

<u>Contents</u>

- 0. Introduction
- 1. Scope
- 2. Reference Publications
- 3. Definitions
- 4. General Requirements
- 5. Test Methods
- Material Qualifications
 Annex

Potential Test Methods

- 1. Polymer Permeation
- 2. Physical Stability and Property Changes
- 3. Rapid Cycling Effects
- 4. Dynamic Frictional Wear
- 5. Material Contamination

Accomplishments and Progress CHMC 2 – Development of Test Method Document Sections

Proudly Operated by Battelle Since 1965

ANSI/CSA CHMC 2-20XX Group	
Test methods for evaluating material compatibility in compressed hydrogen applications - Metals Non Metals	
Corplimetary Is U.S. Department of Energy National Laborations. Distribution Prohibited.	

CHMC 2 Test Me	thod		
\rightarrow Describe test pur			
1.1 Apparatus			
\rightarrow Describe test equ	CHMC 2 Test Metho	d: Physical Stability of	Polymers in Hydrogen Environments
1.2 Test environm	Test Rumose	ravity measurements o	n roiymers
\rightarrow Describe pressure	This test method gives	the details of the proced	ure to evaluate the density changes of specimens of
1.3 Specimen Pren	elastomeric or solid po	olymeric materials due to	swelling or shrinking upon exposure to hydrogen
→ Describe test san	designated test gas (in th	nis case hydrogen).	this will be made provide and alter conditioning in the
1.4 Test Procedure	1.1 Apparatus		
→ Describe test ster	Test equipment will		
1.5 Benerting	1.1.1. A devic be used	CHMC 2 Test Meth	od: Physical Stability of Polymers in Hydrogen Environments
1.5 Keporung	1.1.2. A densi	This test method gives	the details of the procedure to evaluate the change in dimensions and mass of
\rightarrow Describe test rest	1.1.2.2. comp	specimens of elastome	ric or rubbery materials due to swelling or shrinking upon exposure to hydrogen
	1.1.2.3. Sinke shall	designated test gas	ional and mass measurements will be made prior to and after conditioning in the
	1.1.2.4. thern	1.1 Apparatus	
	1.1.2.6. An a	Test equipment wi	CHMC 2 Test Method: Dynamic Wear of Polymers in Hydrogen Environments
	the sj a mil	1.1.1. A dev	1.1 Test Method
	1.1.3. Sample	const	This test method covers laboratory procedures for determining the coefficient of friction, wear volumes,
	1 cm ² ii 1.1.4. A stain	1.1.2. An ar the sr	covers two conditions of testing: a) in-situ testing in a high-pressure hydrogen environment and b) ex-situ
	for the	millic	testing of post-exposure specimens of polymeric and elastomeric materials using a ball-on-flat linear reciprocating geometry similar to ASTM G133-95 (reapproved 2002).
	1.2 Test environm	1.1.5. A cut mm (1.2 Apparatus
	The following s pressure and ter	1.1.4. A sta for th	→ Describe test equipment: in-situ vs. ex-situ
	1.2.1 The conditic	1.2 Test environ	1.1.1 General description of liner reciprocating tribometer for wear and friction property testing
	hydrogen ga	The following	Figure 1A shows the general schematic of a linear reciprocating tribometer. The tribometer shown in Figure
	Conditioning	pressure and	1B is the final design of one-such device that can be used in-situ in a high-pressure hydrogen autoclave. Error! Reference source not found, shows the pin and sample geometry in greater detail. The system
	Hydrogen	1.2.1 The condi hydrogen	works by pressing a steel ball (See Error! Reference source not found.A, B) normally into an elastomeric
	CO + CO2 Nitrogen	conditioni	sample that is norizontally-mounted on a linear reciprocating stage. w. The roading on the ball is applied through a series of dead weights set on top of the ball carriage system which is free to move in the vertical
	Oxygen	Component	direction while a computer controlled stepper motor drive provides the horizontal linear motion of the sample stage up to 14 mm. Wear depth of the ball into the sample is measured in the vertical direction by
	Water	CO + CO2	means of a linear position sensor mounted on the ball carriage The motor drive is coupled to the sample
	Table 1. Compo	Oxygen	stage by means of a capacitive load cell which measures the horizontal force on the stage induced by the friction of the ball on the sample. The linear reciprocating motion of the sample stage achieves nearly
		THC Water	constant velocity over 95% of the travel in both directions.
		Table 1. Com	(A) MICH PRESSURE HYDROGEN (B)
		1.2.2 Pressure o psi) during	
		1.2.3 Temperati	
		the end of	
		1.3 Specimen Pr	AN INCOME DE LA COMPACIACIÓN DE
		The following	

Figure 1. (A) Schematic of the in situ tribometer to measure friction and wear in a high-pressure hydrogen environment.

Accomplishment and Progress Dissemination of Information H2Tools.org Website and Database

Proudly Operated by Battelle Since 1965

nttps://aws-beta.nztoois.org/resources/nzcop

Editor Resources Hyarc Forums Partners Abou

HOME / HYDROGEN COMPATIBILITY OF POLYMERS

:tools.org/resources/h2cop/tribology

Sub Pages Tribology Pressure Cycle Aging Scattering While much is known about damaging embrittlement effects of hydrogen on me the effects of high pressure hydrogen on polymers. The hydrogen infrastructure (1) distribution and delivery, (2) fueling stations, and (3) fuel cell systems of which materials to meet the rigorous demands of the environment that they are subje materials in the most effective combinations allow for safe and cost-effective de lising non-metallic materials are an essential element in this mix of material. The the new pressure hydrogen environment is important to the myriad of applicati infrastructure cluding applications of compressors, seals, valves, and actuator: conditions range from succenci storage 77K (-196°C) and 70 MPa to as high as 4 typical application temperature area for gaseous hydrogen systems is 233K (-4) interests of hydrogen effects are:

- Permeation
- Physical Stability (property changes)
 Dynamic Frictional Wear
- Rapid Cycling Effects
- Material Contamination

To support the needs of the hydrogen community, Pacific Northwest National La Laboratory, and Oak Ridge National Laboratory, have been developing test meth for hydrogen compatibility. The team has been collaborating with international methods and collecting data for development of a non-metallic database referen

H2 Tools is intended for public use. It was built, and is maintained, by the Pacific Northwest National Laboratory with funding from the DOE Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office.

HOME / H2COP / TRIBOLOGY

Enter keywords

Tribology

In Situ High Pressure Hydrogen Testing Capabilities

PNNL has high pressure hydrogen autoclaves capable of soaking materials up to 5000 psi, and at elevated temperatures. These are large 1 gallon capacity systems capable of accommodating different in situ test systems. Electrical feed-throughs provide power and sensing for the instruments. Short descriptions of available equipment are listed here.

Q

Tribology: A custom built linear reciprocating (ASTM G133) pin on flat system that is capable of testing samples up to approximately 1" wide at XN, and 5Hz with a stroke length of 1/4". The system was designed primarily for polymeric materials, but could potentially accommodate metals testing.

Autoclave Test Methodology

PNNL Preliminary Test Methodology Report 12-22-16

This test methodology describes in situ testing of friction and wear (tribology) of polymers under high pressure hydrogen. This methodology is based in part on the existing tribological standard ASTM G133 "standard test method for linearly reciprocating ball-on-flat sliding wear". Friction and wear testing under a highpressure hydrogen environment is critical for hydrogen fueling infrastructure components such as compressors, valves and other actuated devices. Here we present test a methodology for in situ friction andwear studies of polymers under 28 MPa (4,000 psi) hydrogen in a linear reciprocating custom built apparatus. Supporting data from in situ acrylonitrile-butadiene rubber (NBR, commercially Buna-N) tests in 28 MPa (4,000 psi) hydrogen are presented.

Relevant Standards

STANDARD ID (PREFIX "ASTM")	TITLE	STATUS	DEVELOPED BY SUBCOMMITTEE	BOOK OF STANDARDS	DOI	ACTIVE STANDARD LINK
G105 · 16	Standard Test Method for Conducting Wet Sand/Rubber Wheel	Active	G02.30	03.02		

Accomplishments and Progress Database Structure/Query Breakdown

PDMS

50

Score

Thermodynamic State (Temperature, Pressure): 33.333

75

Teflon AF 2400

Teflon AF 1600

Hyflon AD 60

PDMS

25

Proudly Operated by Battelle Since 1965

	7	Logical F	ilters						Filters		- ?				M	at	eri	al	D	ata	ha	s e			
		Logical f	ilters can be use	ed to red	uce the Data	Set prior to a	analysis							Ref	Material	Cless	Descripti I	lensity U	nit[Density F	tardness Unit[Har	Temperatur	Unit[Tem Pre	sure Unit[Pres	sure Diffusing Species	Permeability
													0	11	Telline AE 2400	~	on N/A	1.244	afrantil.	uness)	e 	peraturej	1	Mademan	B41718864.4
													1	113	Teflon AF 1600	C4	N/A	1.836	a/cm*3	- Shore A	350		MPa	Hydrogen	134248464.6
H2 Perm	eability (Barrer) is Les	s than 3									×		2	[1]	Hyflon AD 60	64	N/A	1.93	g/cm^3	- Shore A	350	č .	MPa	Hydrogen	69565113.46
_													8	[1]	Nation N117	C4	N/A		g/cm^3	- Shore A	350	c .	MPa	Hydrogen	5858114.818
Add Filte	r Clear Filters												4	[1]	Tecnofion PL 455	C4	N/A		g/cm*3	- Shore A	350	¢	MPa	Hydrogen	5369938 583
													5	[1]	Tecnafian PL 457	64	N/A		@/cm^3	- Shore A	350	<	MPa	Hydrogen	4759718.29
	Data Set for Analysis							- 7	Criteria Weighting Drag and drose criteria to	rank there from best to worst. Criteria can also be excluded from	the analysis.	- 7	7	[1]	Tecnofion P 459	Ç4	N/A Original,		Elcm ^A 3	- Shore A	350	<	MPa	Hydrogen	8176951.933
Ш	The following Data Se downselect alternative	will be used for the ana s before executing the a	lysis with the parameters de nalysis.	fined above. C	lick the checkboxes to f	uther							8	(5)	Viton A-100-1	C4	cune Post	1.9	g/cm/3	79 Shore A	•	()	MPa	Hydrogen	
Shaw Evrived	of Criteria								Al lens					[5]	Viton A-100-2	64	Cured: 70hr, 200 %	1.9	g/cm^3	- Shore A			MPa	Hydropen	
	ou chiefa								Ranking Order Centroid				9				Original,		-						
	100% Tensile Modulus (MPa)	Failure Elogation (%) Hardness (Shore)	Tg ("C)	Temperature (*C)	Pressure (kPa)	H2 Permea	ability (Barrer)	E H2 Permeability					[5]	Viton A-200-1	C4	cure	1.9	g/cm^3	79Shore A	18.3	č i	MPa	Hydrogen	- G
Telion AF 2400	1500	7.9	75	240	77	1013	28		(Barrer) = Failure Elogation (%)				10				Post Cured:								
Technolion P 457	5.9	239	23	-15	77	1013	0.39		E 150% Tensile Modulus (MPa)					[5]	Viton A-200-2	64	70hr, 200 *C	19	e/cm^3	- Shore A		c .	MPa	Hydrogen	14
Teleo DTEE 050A	406	300	50	117	.16	1794	22.6		Hardness (Shore)				11	[2]	Neofion PTFE	64	N/A	-	g/cm*3	- Shore A	-		MPa		-
									= Tg (*C)				12	[6]	PCTFE-1	C4	N/A		g/cm*3	- Shore A	298		MPa	Hydrogen	39054.09879
Neotion DF-0050C1	74000	2/9	85	100	25	6895	0.74		H2 Permeability (Barrer)			0.46	13	[6]	PCTFE-2	C4	N/A	•	g/cmA3	- Shore A	298	¢ .	MPa	Hydrogen	114721.4152
Elastollan C80A	41.4	3000	85	-40	20	100	6		Failure Elogation (%)			0.26	14	[3]	PP	C15	N/A	0.946	s/cm^3	- Shore A		ć	MPa	Hydrogen	256-15
NBR (27% CN)	2.6	250	60	-2	25	100	16		Hardness (Shore)			0.09	15	[2]	PP	C15	N/A	0.946	g/cm^3	- Shore A	- 2	ε	MPa	Hydrogen	
Polybutadiene	15	500	15	-100	25	100	41.9		Tg (°C)			0.04	16	[4]	HDPE	C15	K44 Pipe Grade	2.55	e/cm^3	- Shore A	2.1	6 8	MPa	Nitrogen/Hydrogen 95/05	- 22
	R												17				K44 Pipe Grade,								
		Group Weight	Criterion					Rank	Criterion Weight	Overall Weight				[4]	HOPE	CIS	carbon black filler	2.55	e/cm^3	- Shore A			MPa	Nibrogen/Hydrogen 95/05	
	Transport	ana i	Permeability (r	nol H2/	m.s.MPa)			N/A	0.7	0.233			38				K44 Pipe			1.000				Nitrogen/Hydrogen	
	Properties (Permeability)	0.333	Diffusivity (cm)	2/s)				N/A	0.300	0.100			19	141	HDPE*	CIS	Grade	2.55	g/cm^3	- Shore A	-		MPa	.95/.05	-
	(r criticability)	1						11112					20	(6)	LOPE	CIS	N/A	0.917	elcmA3	- Shore A	298		MPa	Hydrogen	1220440 587
	Physical		100% Tensile	Modulus	s (MPa)			N/A	0.500	0.167			21	111	Matrimid		N/A	0	a/cm^3	- Shore A	350		MPa	Hydrogen	3295189 585
	(Density, 100 %	0.333											22	[2]	BASF Elastollan-1	C11	C 80A	1.12	g/cm^3	- Shore A	293		MPa	Hydrogen	3157477022
	Tensile		Density (g/cc)					N/A	0.500	0.167			23	[2]	BASF Elestollan-2	C11	C 85A	1.12	g/cm*3	- Shore A	294	c :	MPa	Hydrogen	2804865375
	Modulus)	1											24	[2]	BASF Elastollan-3	C11	C 90A	1.12	g/cm^3	- Shore A	294	c :	MPa	Hydrogen	2107655982
	Thermodynamic												25	[2]	BASF Elestollan-4	C11	C 95A	1.12	g/cm*3	- Shore A	296	C	MPa	Hydrogen	1402432687
	(Temperature, Pressure)	0.333	Temperature (I	K)				N/A	1.000	0.333			20	[2]	Lubrizol Estane TPU	C11	1.14mm thick film 27%	•	g/cm^3	- Shore A		¢	MPa	Helium	2.332058+11
	and the second													[6]	Nitrile Rubber		ie is	-2	g/cm^3	- Shore A	298	0	MPa	Hydrogen	1952704.939
							L	Res	sults			• Da	ata	ba	ise is r	າດເ	oul	ate	ed f	rom	ag	ree	d ur	on tes	t

- Database is populated from agreed upon test methods using ASTM, ISO, CSA and others for consistency in comparing material properties
- Analysis tool to query specific information from database for compatibility comparisons

100

Accomplishments and Progress Dissemination of Information

- The team continues to work on disseminating the information gathered on this project through presentations, publications, and involvement in code committee work
 - Team member Mike Veenstra is now chair of the CHMC II nonmetallic hydrogen compatibility code committee
 - CHMC-2 working group has 25 active participants involved in developing standards in 5 different test topic areas
 - The continues to engage with international researchers and companies, including a keynote address to the International Hydrogen Energy Development Forum, and an invited talk at the Hydrogenius Research Symposium, both in Fukuoka, Japan
 - The new publication in Review of Scientific Instruments on the Tribology work
 - The H2tools.org webpage is functioning to showcase this work and provide a database/guide on h2tools.org.

h2tools.org

Approach **Accelerated Pathway to Tank Qualification**

- Develop methods and technologies to test, evaluate, and rapidly screen materials for use in pressurized hydrogen cryogenic storage applications and accelerate the pathway to tank qualification
- Tested cryogenic material properties to provide input to predictive burst test models for high pressure hydrogen cryogenic pressure vessel

Developing material testing protocols and database of cryogenic material properties. Material properties can be significantly impacted with temperature.

6000

4000

Pacific Northwest

NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965

Proposed Future Work

Proudly Operated by Battelle Since 1965

FY18

- Continue involvement and leadership in CHMC II
- Complete heating/cooling tribology testing for NBR, EPDM, and PTFE
- Update website database/guide and continue publications and presentations
- Complete pressure cycle aging studies on NBR, EPDM, PTFE, Viton, and POM
- Complete development of in situ DMA
- Identify other critical areas of need for polymer/hydrogen testing

▶ FY19-22

- Build up material properties in database
- Long term aging effects of hydrogen
- Material contamination of hydrogen
- Complete neutron scattering experiments on pressure cycle aged polymers
- Material damage effects from hydrogen and pressure
- Polymeric material damage model
- New material development approaches for improved durability of elastomers

Accomplishment Summary

- Stakeholder Engagement & Dissemination
 - CHMC 2 committee functioning with over 20 active member participants
 - Industry engagement gives insight of challenges with testing and materials they are being faced with
 - H2tools.org website for Hydrogen Compatibility of Polymers is being published
- Technical Accomplishments
 - PNNL completed design of a novel in situ dynamic mechanical analyzer for high pressure hydrogen
 - Collaboratively developed new model compounds with Kyushu University that are designed to understand the effects of hydrogen on material and additives in EPDM and NBR
 - Hydrogen permeability is influenced material morphology and additives
 - Completed tribology baseline testing of model NBR and EPDM
 - Unfilled materials of EPDM are weak and require reduced normal force loads
 - Filled materials show a small amount of wear compared to previously purchased commercial materials
- Static high pressure hydrogen gas material effects on EPDM and NBR additives
 - Both EPDM and NBR show an increase in compression set after H2 exposure; NBR shows a higher increase
 - Both EPDM and NBR show a decrease in storage modulus upon H2 exposure
 - Swelling upon H2 exposure is less with filler than without
 - Addition of fillers changes damage seen in NBR due to H2 exposure from linear microcracks to pinpoint voids
 - Addition of fillers helps EPDM with respect to H2 resistance fewer cracks
- Sandia and ORNL have developed rapid cycling test plan for thermoplastic polymers for neutron scattering studies
- Database setup but hydrogen data in polymers is scarce and test methods are inconsistent
- Analysis tool developed to assist in screening materials based on hydrogen material property criteria

Response to previous year's reviewers' comments

- The project has made significant progress to date: it has developed new test procedures and equipment capabilities and produced new information critical to hydrogen fuel applications
 - The project is now focusing on material property changes in situ and post exposure to hydrogen to better provide lacking information for stakeholders and to determine the material gaps that need to be addressed for hydrogen infrastructure
- It is not clear how PNNL and SNL are collaborating on the project. It does not seem that the two laboratories are working on overlapping themes. Collaborative work between ORNL and SNL or PNNL and SNL was not explained during the presentation.
 - Our collaboration may not have been clearly explained in slide 7. We are highly collaborative in discussion of results and ideas.
- The collaborations to date are appropriate. The project should consider how to supply this information to the stakeholders. Dr. Shin Nishimura of Kyushu University is doing similar research. Collaboration with Kyushu might be appropriate
 - We have increased our collaboration with Kyushu University and we are sharing research results and test methodologies
- The project should focus on characterization of polymers, not screening of polymers as acceptable or unacceptable for use. The key point is understanding hydrogen impact.
 - We have put more focus into understanding the hydrogen and pressure impacts with the development of EPDM and NBR model compounds with various additives for hydrogen effects

Collaborative Activities

Proudly Operated by Battelle Since 1965

34

Partner		Project Roles						
	DOE	Sponsorship, Steering						
Pacific Northwest	PNNL	Project Lead, Polymer Characterization, Wear and Tribological Studies, Mechanical Properties and Moderate Pressure						
Sandia National Laboratories	SNL	Exposure Pressure Cycling Studies, Mechanical Properties and High Pressure, Develop Technical Reference Documentation and Database						
OAK RIDGE National Laboratory	ORNL	Neutron and X-ray Scattering Studies						
Fired	Ford	Subcontracted Participant and Consultant, Represent OEM Perspective						

Additionally, the team has reached out to over 40 industrial stakeholders for information and had discussions with over 25, including Linde and Parker, and Swagelok Application space April 7, 2018 April 7, 2018

Remaining Challenges and Barriers

Proudly Operated by **Battelle** Since 1965

Challenges and Barriers	Mitigation
Large amount of polymers and elastomers to test	Test methodology developments are material focused from stakeholders
In situ temperature testing (-40 to 85°C)	Redesign of sample cooling to better control and evaluate temperature effect
Testing time is long	When appropriate double up on sample soaking
Dissemination of data is a broad audience	Engagement with stakeholders in working group with CSA, presentation, implementation of h2tools.org with database and guide
Cannot see impact of hydrogen during long term cycling or frictional wear in a short test (Impact may not exist)	Target and test materials that are believed most likely to be impacted prior to evaluating other candidates
Working with high pressure H2	National lab experience working with high pressure hydrogen

Technology Transfer and Outreach

Stakeholder Engagement

- Continued outreach internationally with trip to Japan Hydrogenius conference added Japanese stakeholders
- Continue to present and publish results
- Webpage on h2tools.org

Code and Standards Committees

- Leadership on CSA's new committee on CHMC II Non-Metallics
- CSA Committee and collaborative interactions with working groups of industry stakeholders

Industrial Collaborators

- Maintain dialog with Collaborators to discuss pathways for qualification and technology transfer
- Automotive and refueling station stakeholders

Contacts

Proudly Operated by **Battelle** Since 1965

Kevin Simmons (PM)	☎ : 509-372-4343	⊠: <u>kl.simmons@pnnl.gov</u>
Nalini Menon	霍 : 925-294-4872	⊠: <u>ncmenon@sandia.gov</u>
Barton Smith	☎ : 865-574-2196	⊠: <u>smithdb@ornl.gov</u>
Mike Veenstra	雷 : 313-322-3148	⊠: <u>mveenstr@ford.com</u>

Proudly Operated by Battelle Since 1965

Technical Backup Slides

Approach Strategy for Polymer Compatibility with Hydrogen

Proudly Operated by **Battelle** Since 1965

39

Proudly Operated by **Battelle** Since 1965

Test Methodology Development

- PNNL has developed a new test methodology for *in situ* hydrogen measurement of friction and wear of polymers (tribology)
 - Infrastructure applications include:
 - Dynamic seals for compressors, valves (O-rings and seats), regulators
 - Delivery hose liners where frictional contact can occur
 - Failure mechanisms are:
 - Increased leak rates
 - Reduced mechanical efficiency
 - Reduced part lifetime due to part degradation
- Instrument Specifications*
 - Linear reciprocating instrument capable of up to 5,000 psi in situ hydrogen
 - Measures in situ frictional load and wear depth profile
- Tests to date:
 - Model Materials that have been tested or are in process include:
 - NBR (nitrile butadiene rubber or Buna-N) completed 4,000 psi hydrogen, 4,000 psi argon, ambient air.
 - EPDM (ethylene propylene diene monomer) In progress 4,000 psi hydrogen, ambient air, 4,000 psi argon completed
 - NBR, EPDM materials are undergoing NMR studies and are expected to be complete by end of summer 2018
- Upgrade planned late 2018 to include in situ heating and cooling
 - Targeted range -40 to +85 C
 - New low temperature autoclave
 - Design complete and fabrication is in progress

Accomplishments and Progress Micro-CT images for NBR after H2 exposure

Proudly Operated by Battelle Since 1965

H2 exposure of NBR N1 shows fewer and smaller slit-shaped voids.

There is no preferred orientation. There are perhaps a few more voids in the interiorneed to confirm.

Comparison of EPOM and NBR before and after hydrogen exposure BEMIIIs 20180320

Microcrack damage is less significant and more pin-point in shape

- Formulation NBR N1 has no filler or plasticizer
- Both formulations contain high Z particles (5% by wt. ZnO)

Microcracks in left picture changed to more pin-point voids in right picture which are not aligned in any particular direction and seem more or less distributed all over

3000 8402 yes H2 N1

Accomplishments and Progress Micro-CT images for NBR after H2 exposure

Proudly Operated by Baffelle Since 1965

H2 exposure of NBR N6 shows large numbers of small isotropic voids.

- Fillers in EPDM E6 are: carbon black (300 nm) and Silica
- Both formulations contain high Z particles (5% by wt. ZnO)

There is no preferred position within the sample.

Comparison of EPDM and NBR before and after hydrogen exposure BEMills 20180320

Fillers appear to change the nature of cracks/voids in NBR after H2 exposure

Accomplishments and Progress CHMC 2 – High Priority Tests

Proudly Operated by Battelle Since 1965

Demonstration of Filtering Data and Criteria Weighting

Proudly Operated by Battelle Since 1965

Filters used to define areas of interests and specific weighting of importance

Proudly Operated by **Battelle** Since 1965

Analysis Outcome

	Group Weight	Criterion	Rank	Criterion Weight	Overall Weight
Transport	0 222	Permeability (mol H2/m.s.MPa)	N/A	0.7	0.233
(Permeability)	0.333	Diffusivity (cm2/s)	N/A	0.300	0.100
Physical Properties (Density, 100 % Tensile Modulus)	0 222	100% Tensile Modulus (MPa)	N/A	0.500	0.167
	0.333	Density (g/cc)	N/A	0.500	0.167
Thermodynamic State (Temperature, Pressure)	0.333	Temperature (K)	N/A	1.000	0.333

